Altered gut microbiota is associated with autism spectrum disorders (ASD), a group of complex, fast growing but difficult-to-diagnose neurodevelopmental disorders worldwide. However, the role of the oral microbiota in ASD remains unexplored. Via high-throughput sequencing of 111 oral samples in 32 children with ASD and 27 healthy controls, we demonstrated that the salivary and dental microbiota of ASD patients were highly distinct from those of healthy individuals. Lower bacterial diversity was observed in ASD children compared to controls, especially in dental samples. Also, principal coordinate analysis revealed divergences between ASD patients and controls. Moreover, pathogens such as Haemophilus in saliva and Streptococcus in plaques showed significantly higher abundance in ASD patients, whereas commensals such as Prevotella, Selenomonas, Actinomyces, Porphyromonas, and Fusobacterium were reduced. Specifically, an overt depletion of Prevotellaceae co-occurrence network in ASD patients was obtained in dental plaques. The distinguishable bacteria were also correlated with clinical indices, reflecting disease severity and the oral health status (i.e. dental caries). Finally, diagnostic models based on key microbes were constructed, with 96.3% accuracy in saliva. Taken together, this study characterized the habitat-specific profile of the oral microbiota in ASD patients, which might help develop novel strategies for the diagnosis of ASD.
BackgroundClass III malocclusion is a maxillofacial disorder that is characterised by a concave profile and can be attributed to both genetic inheritance and environmental factors. It is a clinical challenge due to our limited understanding of its aetiology. Revealing its prototypical diversity will contribute to our sequential exploration of the underlying aetiological information. The objective of this study was to characterize phenotypic variations of Class III malocclusion via a lateral cephalometric analysis in a community of Chinese individuals.MethodOne-hundred-and-forty-four individuals (58 males ≥18 and 86 females ≥16) with Class III malocclusion ranging from mild to severe were enrolled in this study. Principal component analysis and cluster analysis were performed using 61 lateral cephalometric measurements.ResultsSix principal components were discovered in the examined population and were responsible for 73.7 % of the variability. Four subtypes were revealed by cluster analysis. Subtype 1 included subjects with mild mandibular prognathism with a steep mandibular plane. Subjects in subtype 2 showed a combination of prognathic mandibular and retrusive maxillary with a flat or normal mandibular plane. Subtype 3 included individuals with purely severe mandibular prognathism and a normal mandibular plane. Individuals in subtype 4 had a mild maxillary deficiency and severe mandibular prognathism with the lowest mandibular plane angle.ConclusionThe six principal components extracted among the 61 variables improve our knowledge of lateral cephalometric analysis for diagnoses. We successfully identified four Class III malocclusion subtypes, indicating that cluster analysis could supplement the classification of Class III malocclusion among a Chinese population and may assist in our on-going genetic study.Electronic supplementary materialThe online version of this article (doi:10.1186/s13005-016-0127-8) contains supplementary material, which is available to authorized users.
BackgroundIt is well known that genetic components play an important role in the etiology of mandibular prognathism, but few susceptibility loci have been mapped.MethodologyIn order to identify linkage regions for mandibular prognathism, we analyzed two Chinese pedigrees with 6,090 genome-wide single-nucleotide polymorphism (SNP) markers from Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM). Multipoint parametric and non-parametric (model-free) linkage analyses were used for the pedigrees.Principal FindingThe most statistically significant linkage results were with markers on chromosome 4 (LOD = 3.166 and NPL = 3.65 with rs 875864, 4p16.1, 8.38 cM). Candidate genes within the 4p16.1 include EVC, EVC2.ConclusionWe detected a novel suggestive linkage locus for mandibular prognathism in two Chinese pedigrees, and this linkage region provides target for susceptibility gene identification, a process that will provide important insights into the molecular and cellular basis of mandibular prognathism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.