Climate change and increasing urbanization have contributed greatly to urban flooding, making it a global problem. The resilient city approach provides new ideas for urban flood prevention research, and currently, enhancing urban flood resilience is an effective means for alleviating urban flooding pressure. This study proposes a method to quantify the resilience value of urban flooding based on the ‘4R’ theory of resilience, by coupling the urban rainfall and flooding model to simulate urban flooding, and the simulation results are used for calculating index weights and assessing the spatial distribution of urban flood resilience in the study area. The results indicate that (1) the high level of flood resilience in the study area is positively correlated with the points prone to waterlogging; the more an area is prone to waterlogging, the lower the flood resilience value. (2) The flood resilience index in most areas shows a significant local spatial clustering effect, with the number of areas with nonsignificant local spatial clustering accounting for 46% of the total. The urban flood resilience assessment system constructed in this study provides a reference for assessing the urban flood resilience of other cities, thus facilitating the decision-making process of urban planning and disaster mitigation.
The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel. At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures. Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation. The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern. The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions' habitat quality index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.