A highly conductive graphene sheet-mesoporous carbon (MC) sphere/active sulfur (GMC-S) film, with MC-sulfur spheres as "active islands" and graphene sheets as "trapping nets", exhibits good cycling stability (500 cycles, with a capacity retention of 85%) with a high specific capacity of 1322 mA h g at 0.1C.
Here, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning platform for high-throughput biological sequence functional analysis. DeepBIO is a one-stop-shop web service that enables researchers to develop new deep-learning architectures to answer any biological question. Specifically, given any biological sequence data, DeepBIO supports a total of 42 state-of-the-art deep-learning algorithms for model training, comparison, optimization and evaluation in a fully automated pipeline. DeepBIO provides a comprehensive result visualization analysis for predictive models covering several aspects, such as model interpretability, feature analysis and functional sequential region discovery. Additionally, DeepBIO supports nine base-level functional annotation tasks using deep-learning architectures, with comprehensive interpretations and graphical visualizations to validate the reliability of annotated sites. Empowered by high-performance computers, DeepBIO allows ultra-fast prediction with up to million-scale sequence data in a few hours, demonstrating its usability in real application scenarios. Case study results show that DeepBIO provides an accurate, robust and interpretable prediction, demonstrating the power of deep learning in biological sequence functional analysis. Overall, we expect DeepBIO to ensure the reproducibility of deep-learning biological sequence analysis, lessen the programming and hardware burden for biologists and provide meaningful functional insights at both the sequence level and base level from biological sequences alone. DeepBIO is publicly available at https://inner.wei-group.net/DeepBIO.
Motivation
The development of microscopic imaging techniques enables us to study protein subcellular locations from the tissue level down to the cell level, contributing to the rapid development of image-based protein subcellular location prediction approaches. However, existing methods suffer from intrinsic limitations, such as poor feature representation ability, data imbalanced issue, and multi-label classification problem, greatly impacting the model performance and generalization.
Results
In this study, we propose MSTLoc, a novel multi-scale end-to-end deep learning model to identify protein subcellular locations in the imbalanced multi-label immunohistochemistry (IHC) images dataset. In our MSTLoc, we deploy a deep convolution neural network to extract multi-scale features from the IHC images, aggregate the high-level features and low-level features via feature fusion to sufficiently exploit the dependencies amongst various subcellular locations, and utilize Vision Transformer (ViT) to model the relationship amongst the features and enhance the feature representation ability. We demonstrate that the proposed MSTLoc achieves better performance than current state-of-the-art models in multi-label subcellular location prediction. Through feature visualization and interpretation analysis, we demonstrate that as compared with the hand-crafted features, the multi-scale deep features learnt from our model exhibit better ability in capturing discriminative patterns underlying protein subcellular locations, and the features from different scales are complementary for the improvement in performance. Finally, case study results indicate that our MSTLoc can successfully identify some biomarkers from proteins that are closely involved with cancer development. For the convenient use of our method, we establish a user-friendly webserver available at http://server.wei-group.net/ MSTLoc.
Availability and implementation
http://server.wei-group.net/ MSTLoc.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.