The economic load dispatch (ELD) problem is a complex optimization problem in power systems. The main task for this optimization problem is to minimize the total fuel cost of generators while also meeting the conditional constraints of valve-point loading effects, prohibited operating zones, and nonsmooth cost functions. In this paper, a novel grey wolf optimization (GWO), abbreviated as NGWO, is proposed to solve the ELD problem by introducing an independent local search strategy and a noninferior solution neighborhood independent local search technique to the original GWO algorithm to achieve the best problem solution. A local search strategy is added to the standard GWO algorithm in the NGWO, which is called GWOI, to search the local neighborhood of the global optimal point in depth and to guarantee a better candidate. In addition, a noninferior solution neighborhood independent local search method is introduced into the GWOI algorithm to find a better solution in the noninferior solution neighborhood and ensure the high probability of jumping out of the local optimum. The feasibility of the proposed NGWO method is verified on five different power systems, and it is compared with other selected methods in terms of the solution quality, convergence rate, and robustness. The compared experimental results indicate that the proposed NGWO method can efficiently solve ELD problems with higher-quality solutions.
Dynamically dimensioned search (DDS) is a well-known optimization algorithm in the field of single solution-based heuristic global search algorithms. Its successful application in the calibration of watershed environmental parameters has attracted researcher’s extensive attention. The dynamically dimensioned search algorithm is a kind of algorithm that converges to the global optimum under the best condition or the good local optimum in the worst case. In other words, the performance of DDS is easily affected by the optimization conditions. Therefore, this algorithm has also suffered from low robustness and limited scalability. In this work, an improved version of DDS called DDS-POBL is proposed. In the DDS-POBL, two effective methods are applied to improve the performance of the DDS algorithm. Piecewise opposition-based learning is introduced to guide DDS search in the right direction, and the golden section method is used to search for more promising areas. Numerical experiments are performed on a set of 23 classic test functions, and the results represent significant improvements in the optimization performance of DDS-POBL compared to DDS. Several experimental results using different parameter values demonstrate the high solution quality, strong robustness, and scalability of the proposed DDS-POBL algorithm. A comparative performance analysis between the DDS-POBL and other powerful algorithms has been carried out by statistical methods by using the significance of the results. The results show that DDS-POBL works better than PSO, CoDA, MHDA, NaFA, and CMA-ES and gives very competitive results when compared to INMDA and EEGWO. Moreover, the parameter calibration application of the Xinanjiang model shows the effectiveness of the DDS-POBL in the real optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.