Seismic waveform tomography can invert for the velocity and attenuation ( 1 − Q ) variations simultaneously. For this simultaneous inversion, we propose two strategies for waveform tomography. First, we analyze the contributions of the real part and the imaginary part of the gradients, associated with the velocity and attenuation parameters respectively, and determine that the combination of the real part of the gradient subvector for the velocity parameter and the imaginary part of the gradient subvector for the attenuation parameter would produce an optimal inversion result. Second, we attempt to balance the sensitivities of the objective function to the velocity and the attenuation parameters. Considering the magnitude differences between these twotype parameters in the simultaneous inversion, we apply preliminarily a normalization to both the velocity model and the attenuation model. However, for balancing their sensitivities, we further adjust the corresponding model updates using a tuning factor. We determine this tuning parameter adaptively, based on the sensitivities of these two parameters, at each iteration. Numerical tests demonstrate the feasibility and reliability of these two strategies in full waveform inversion.
In seismic waveform inversion, selecting an optimal multi-parameter group is a key step to derive an accurate subsurface model for characterising hydrocarbon reservoirs. There are three parameterizations for the horizontal transverse isotropic (HTI) media, and each parameterization consists of five parameters. The first parameterization (P-I) consists of two velocities and three anisotropy parameters, the second (P-II) consists of five elastic coefficients and the third (P-III) consists of five velocity parameters. The radiation patterns of these three parameterizations indicate a strong interference among five parameters. An effective inversion strategy is a two-stage scheme that first inverts for the velocities or velocity-related parameters and then inverts for all five parameters simultaneously. The inversion results clearly demonstrate that P-I is the best parameterization for seismic waveform inversion in HTI anisotropic media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.