Increasing evidence indicates that the tumor microenvironment has critical roles in all aspects of cancer biology, including growth, angiogenesis, metastasis and progression. Although chemokines and their receptors were originally identified as mediators of inflammatory diseases, it is being increasingly recognized that they serve as critical communication bridges between tumor cells and stromal cells to create a permissive microenvironment for tumor growth and metastasis. Thus, an important therapeutic strategy for cancer is to break this communication channel and isolate tumor cells for long-term elimination. Cytokine CXCL12 (also known as stromal-derived factor 1α) and its receptor CXCR4 represent the most promising actionable targets for this strategy. Both are overexpressed in various cancer types, and this aberrant expression strongly promotes proliferation, migration and invasion through multiple signal pathways. Several molecules that target CXCL12 or CXCR4 have been developed to interfere with tumor growth and metastasis. In this article, we review our current understanding of the CXCL12/CXCR4 axis in cancer tumorigenesis and progression and discuss its therapeutic implications.
Purpose: Chemokine receptor CXCR2 is associated with malignancy in several cancer models; however, the mechanisms involved in CXCR2-mediated tumor growth remain elusive. Here, we investigated the role of CXCR2 in human ovarian cancer.Experimental Design: CXCR2 expression was silenced by stable small hairpin RNA in ovarian cancer cell lines T29Gro-1, T29H, and SKOV3. Western blotting, immunofluorescence, enzyme-linked immunosorbent assay, flow cytometry, electrophoretic mobility shift assay, and mouse assay were used to detect CXCR2, interleukin-8, Gro-1, cell cycle, apoptosis, DNA binding of NF-κB, and tumor growth. Immunohistochemical staining of CXCR2 was done in 240 high-grade serous ovarian carcinoma samples.Results: Knockdown of CXCR2 expression by small hairpin RNA reduced tumorigenesis of ovarian cancer cells in nude mice. CXCR2 promoted cell cycle progression by modulating cell cycle regulatory proteins, including p21 (waf1/cip1), cyclin D1, CDK6, CDK4, cyclin A, and cyclin B1. CXCR2 inhibited cellular apoptosis by suppressing phosphorylated p53, Puma, and Bcl-xS; suppressing poly(ADP-ribose) polymerase cleavage; and activating Bcl-xL and Bcl-2. CXCR2 stimulated angiogenesis by increasing levels of vascular endothelial growth factor and decreasing levels of thrombospondin-1, a process likely involving mitogen-activated protein kinase, and NF-κB. Overexpression of CXCR2 in high-grade serous ovarian carcinomas was an independent prognostic factor of poor overall survival (P < 0.001) and of early relapse (P = 0.003) in the univariate analysis.Conclusions: Our data provide strong evidence that CXCR2 regulates the cell cycle, apoptosis, and angiogenesis through multiple signaling pathways, including mitogen-activated protein kinase and NF-κB, in ovarian cancer. CXCR2 thus has potential as a therapeutic target and for use in ovarian cancer diagnosis and prognosis. Clin Cancer Res; 16(15); 3875-86. ©2010 AACR.
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Providing guidelines to health care workers during a period of rapidly evolving viral pandemic infections is not an easy task, but it is extremely necessary in order to coordinate appropriate action so that all patients will get the best possible care given the circumstances they are in. With these International Society of Infectious Disease in Obstetrics and Gynecology (ISIDOG) guidelines we aim to provide detailed information on how to diagnose and manage pregnant women living in a pandemic of COVID-19. Pregnant women need to be considered as a high-risk population for COVID-19 infection, and if suspected or proven to be infected with the virus, they require special care in order to improve their survival rate and the well-being of their babies. Both protection of healthcare workers in such specific care situations and maximal protection of mother and child are envisioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.