Recent baby formula milk powder contamination incidents have shown that the classic markers or standards in milk quality control are insufficient in identifying "manipulated" poor-quality milk. In the present study, we demonstrated for the first time that cow milk contains large amounts of microRNAs (miRNAs) and that the unique expression profile of milk-specific miRNAs can serve as a novel indicator and possible new standard for the quality control of raw milk and milk-related commercial products, such as fluid milk and powdered formula milk. First, using Solexa sequencing, we systematically screened miRNA expression in raw milk and identified a total of 245 miRNAs in raw milk. Unlike other classic biomarkers whose expression levels are nearly identical at different periods of lactation, individual miRNAs can be significantly altered during lactation process, implicating that miRNAs may be a more accurate indicator to reflect the quality alteration of milk. Second, using TaqMan probe-based miRNA quantitative RT-PCR, we further identified seven miRNAs that have a relatively consistent expression throughout the lactation process, and more importantly, the expression profile of these seven milk-specific miRNAs can serve as an ideal biomarker for discriminating poor-quality or "manipulated" milk from pure raw milk, as well as for the quality control of commercial milk products, such as fluid milk and powdered formula milk. Together, our findings provide a basis for understanding the physiological role of milk miRNAs and a new potential standard for determining the quality of raw milk or milk-related commercial products.
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
BackgroundCancer-associated fibroblasts (CAFs) are believed to play an essential role in cancer initiation and development. However, little research has been undertaken to evaluate the role of CAFs in endometrial cancer (EC) progression. We aim to detect the functional contributions of CAFs to promote progression of EC.MethodsStromal fibroblasts were isolated from endometrioid adenocarcinomas and normal endometrial tissues. The conditioned media of cultured CAFs and normal fibroblasts (NFs) were collected to detect the level of stromal cell-derived factor-1alpha (SDF-1α), macrophage chemoattractant protein-1 (MCP-1), migration inhibitory factor (MIF), colony stimulating factor-1 (CSF-1), and interleukin-1 (IL-1) by ELISA. The CAFs or NFs were cocultured with EC cell lines to determine the proliferation, migration, and invasion by MTT assays and transwell chambers. Xenograft models were used to observe tumor growth. Matrix metalloproteinases (MMP)-2 and MMP-9 activity was evaluated by zymography. AMD3100 (a chemokine receptor 4 (CXCR4) antagonist) was used to block the SDF-1/CXCR4 axis. Neutralizing antibodies were used to detect PI3K/Akt and MAPK/Erk pathways by western blotting. SDF-1α and CXCR4 expressions were analyzed in xenotransplanted tumors and 348 cases by immunohistochemistry.ResultsCAFs promoted proliferation, migration, and invasion as well as in vivo tumorigenesis of admixed EC cells significantly more than NFs by secreting SDF-1α. These effects were significantly inhibited by AMD3100. CAFs promoted EC progression via the SDF-1α/CXCR4 axis to activate the PI3K/Akt and MAPK/Erk signalings in a paracrine-dependent manner or increase MMP-2 and MMP-9 secretion in an autocrine-dependent manner. SDF-1α and CXCR4 expression upregulation accompanied clinical EC development and progression. High SDF-1α expression levels were associated with deep myometrial invasion, lymph node metastasis, and poor prognosis in EC.ConclusionsOur data indicated that CAFs derived from EC tissues promoted EC progression via the SDF-1/CXCR4 axis in a paracrine- or autocrine-dependent manner. SDF-1α is a novel independent poor prognostic factor for EC patients’ survival. Targeting the SDF-1/CXCR4 axis might provide a novel therapeutic strategy for EC treatment.
Melatonin has been shown to exert anticancer activity on hepatocellular carcinoma (HCC) through its antiproliferative and pro-apoptotic effect in both experimental and clinical studies, and sorafenib is the only approved drug for the systemic treatment of HCC. Thus, this study was designed to investigate the combined effect of melatonin and sorafenib on proliferation, apoptosis, and its possible mechanism in human HCC. Here, we found that both melatonin and sorafenib resulted in a dose-dependent growth inhibition of HuH-7 cells after 48 hours treatment, and the combination of them enhanced the growth inhibition in a synergistic manner. Colony formation assay indicated that co-treatment of HuH-7 cells with melatonin and sorafenib significantly decreased the clonogenicity compared to the treatment with single agent. Furthermore, FACS and TUNEL assay confirmed that melatonin synergistically augmented the sorafenib-induced apoptosis after 48 hours incubation, which was in accordance with the activation of caspase-3 and the JNK/c-jun pathway. Inhibition of JNK/c-jun pathway with its inhibitor SP600125 reversed the phosphorylation of c-jun and the activation of caspase-3 induced by co-treatment of HuH-7 cells with melatonin and sorafenib in a dose-dependent manner. Furthermore, SP600125 exhibited protective effect against apoptosis induced by the combination of melatonin and sorafenib. This study demonstrates that melatonin in combination with sorafenib synergistically inhibits proliferation and induces apoptosis in human HCC cells; therefore, supplementation of sorafenib with melatonin may serve as a potential therapeutic choice for advanced HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.