An 80%Ar-10%CO2-10%He ternary gas mixture was used as the shielding gas during the narrow-gap welding of thick Q690E high-strength steel plates. Complete and defect-free welded joints were obtained, and the microstructure and mechanical properties of the welded joint were investigated. The weld zone consists of a solidification area and interlayer zone, and the heat-affected zone consists of a coarse-grain heat-affected zone (CG-HAZ) and a fine-grain heat-affected zone (FG-HAZ). The microstructures of the weld zone are mainly lath bainite (LB), acicular ferrite (AF), and granular bainite (GB). The microstructure of the CG-HAZ is lath martensite (LM) and the microstructure of FG-HAZ is GB. Methods with different heat inputs were used to study their effects on the mechanical properties of the welded joint. It was found that the microstructure and mechanical properties of the welded joints are better with lower heat input. With tandem wire narrow-gap GMA welding, the tensile strength of the joints declined from 795.3 to 718.3 MPa and the impact toughness at −40 °C resulted in a weak position in the weld zone, which declined from 76~81 J to 55~69 J, when the welding speed reduced from 350 to 250 mm/min. With oscillating-arc narrow-gap GMA welding, the tensile strength achieved 853.4 MPa and the impact toughness at −40 °C was around 69~87 J. The results indicated that, under the appropriate heat input, the tensile strength of the joint exceeds 770 MPa and the low temperature impact toughness at −40 °C exceeds 69 J. A 155 mm-thick Q690E steel welded joint was obtained and the mechanical properties of the welded joint meets the requirements of the offshore drilling platforms.
Swing arc narrow gap GMA welding experiments were carried out with a Box–Behnken response surface design. Weld metal and heat-affected sizes were measured from the joints obtained, and an ANOVA was performed to obtain well-fitting models for definition of the heat-affected length. Overlapping patterns and microstructures were analyzed and observed in zones within the heat-affected length through the thickness direction. In addition, thermal processes in typical zones of HAZs were calculated by FEM and analyzed to explain the patterns in the typical coarse grain heat-affected zones (CG-HAZs) with thermal simulated microstructures attached. It was realized that a single pass could only be confused with an austenitized process by two passes. The coarse grain heat-affected zone of a single pass could be divided into an unaltered coarse grain heat-affected zone (UACG-HAZ), a supercritically reheated coarse grain heat-affected zone (SCRCG-HAZ) and an intercritically reheated heat-affected zone (IRCG-HAZ). It is likely that there would be an intercritically reheated UACG-HAZ upon the UACG-HAZ. The microstructures in the CG-HAZs and the UACG-HAZ were mainly lath bainite and a little acicular ferrite; the microstructures in the SCRCG-HAZ were short lath bainite, granular bainite and acicular ferrite and the microstructures in the IRCG-HAZ were massive textures and secondary austenite decomposition products. The cooling times in the typical bainite transformation procedures were similar to one another in a secondary austenitized process and significantly longer than those in a single austenitized thermal cycle, which caused similar patterns in reheated CG-HAZs and an increase in acicular ferrite compared to CG-HAZs. The prior austenite grain sizes caused differences among the reheated CG-HAZs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.