a b s t r a c tIn the process of rapid development and urbanization in Beijing, identifying the potential factors of carbon emissions in the transportation sector is an important prerequisite to controlling carbon emissions. Based on the expanded Kaya identity, we built a multivariate generalized Fisher index (GFI) decomposition model to measure the influence of the energy structure, energy intensity, output value of per unit traffic turnover, transportation intensity, economic growth and population size on carbon emissions from 1995 to 2012 in the transportation sector of Beijing. Compared to most methods used in previous studies, the GFI model possesses the advantage of eliminating decomposition residuals, which enables it to display better decomposition characteristics (Ang et al., 2004). The results show: (i) The primary positive drivers of carbon emissions in the transportation sector include the economic growth, energy intensity and population size. The cumulative contribution of economic growth to transportation carbon emissions reaches 334.5%. (ii) The negative drivers are the transportation intensity and energy structure, while the transportation intensity is the main factor that restrains transportation carbon emissions. The energy structure displays a certain inhibition effect, but its inhibition is not obvious. (iii) The contribution rate of the output value of per unit traffic turnover on transportation carbon emissions appears as a flat ''M". To suppress the growth of carbon emissions in transportation further, the government of Beijing should take the measures of promoting the development of new energy vehicles, limiting private vehicles' increase and promoting public transportation, evacuating non-core functions of Beijing and continuingly controlling population size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.