Silicon sub-bandgap near-infrared (NIR) (λ > 1100 nm) photovoltaic (PV) response by plasmon-enhanced internal photoemission was investigated. The Si sub-bandgap NIR PV response, which remains unexploited in Schottky junction-like solar cell device, was examined using nanometer sized Au/Al2O3/n-Si junction arrays. This kind of metal–insulator–semiconductor structure was similar in functionality to Schottky junction in NIR absorption, photo-induced charge separation and collection. It showed that NIR absorption increased steadily with increasing volume of Au nanoparticles (NPs) till a saturation was reached. Simulation results indicated the formation of localized surface plasmon on the surfaces of Au NPs, which was correlated well with the observed NIR absorption. On the other hand, the NIR PV response was found sensitive to the amount and size of Au NPs and thickness of Al2O3. Chemical and field-effect passivation of n-Si by using Al2O3 and SiO2 were used to optimize the NIR PV response. In the current configuration, the best PV conversion efficiency was 0.034% at λ = 1319 nm under illumination power of 0.1 W/cm2.
Over decades of research on photoluminescence (PL) of silicon quantum dots (Si-QDs), extensive exploratory experiments have been conducted to find ways to improve the photoluminescence quantum yield (PLQY). However, the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.