The complete sequence of GF_YL20, a potato virus Y (PVY) isolate from China, encodes a polyprotein of 3,061 amino acids. Sequence analysis indicates that GF_YL20 has a genomic structure different from previously reported PVY strains. It shares 99 % nucleotide sequence identity with PB209 (PVY(N:O)) except in VPg, but more than 97 % nucleotide sequence identity with the VPg of Mont (PVY(N)), PB312 (PVY(NTN)) and HN2 (SYR-I). Phylogenetic analysis indicates that GF_YL20 is a novel N:O recombinant with three recombination breakpoints.
Background: Enteritis is one of the most frequently reported symptoms in piglets infected with porcine circovirus type 2 (PCV2), but the immunopathogenesis has not been reported. Objectives: This study examined the effect of a PCV2 infection on the intestinal mucosal immune function through morphological observations and immune-related molecular detection. Methods: Morphological changes within the ileum of piglets during a PCV2 infection were observed. The expression of the related-molecules was analyzed using a gene chip. The immunocyte subsets were analyzed by flow cytometry. The secretory immunoglobulin A (SIgA) content was analyzed by enzyme-linked immunosorbent assay. Results: The PCV2 infection caused ileal villus damage, intestinal epithelial cells exfoliation, and an increase in lymphocytes in the lamina propria at 21 days post-infection. Differentially expressed genes occurred in the defense response, inflammatory response, and the complement and coagulation cascade reactions. Most of them were downregulated significantly at the induction site and upregulated at the effector site. The genes associated with SIgA production were downregulated significantly at the induction site. In contrast, the expression of the Toll-like receptor-related genes was upregulated significantly at the effector site. The frequencies of dendritic cells, B cells, and CD8 + T cells were upregulated at the 2 sites. The SIgA content decreased significantly in the ileal mucosa. Conclusions: PCV2 infections can cause damage to the ileum that is associated with changes in immune-related gene expression, immune-related cell subsets, and SIgA production. These findings elucidated the molecular changes in the ileum after a PCV2 infection from the perspective of intestinal mucosal immunity, which provides insights into a further study for PCV2-induced enteritis.
Background: Dysfunction of endothelial cells and vascular system is one of the most important pathological changes of porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2). PCV2-infected endothelial cells can upregulate the production of endothelial-derived IL-8, which can inhibit the maturation of dendritic cells. Endothelial-derived IL-8 has different structural and biological characteristics compared with monocyte-derived IL-8. However, the mechanism of endothelial-derived IL-8 production is still unclear. Results: Key molecules of RIG-I-like signaling pathway RIG-I, MDA-5, MAVS and a key molecule of JNK signaling pathway c-Jun in PCV2-infected porcine iliac artery endothelial cells (PIECs) were upregulated significantly detected with quantitative PCR, Western blot and fluorescence confocal microscopy, while no significant changes were found in NF-κB signaling pathway. Meanwhile, the expression of endothelial-derived IL-8 was downregulated after RIG-I, MDA-5, or MAVS genes in PIECs were knocked down and PIECs were treated by JNK inhibitor. Conclusions: PCV2 can activate RIG-I/MDA-5/MAVS/JNK signaling pathway to induce the production of endothelialderived IL-8 in PIECs, which provides an insight into the further study of endothelial dysfunction and vascular system disorder caused by PCV2.
The objectives of this study were to understand the sequence variation and the putative protein structure of pipo gene in the Potato virus Y (PVY) collected from Solanum tuberosum. The pipo gene in PVY was cloned using a pair of degenerate primers designed from its conserved region and its sequences were used to re-construct phylogenetic tree in Potyvirus genera by a Bayesian inference method. An expected fragment of 235 bp was amplified in all 20 samples by RT-PCR and the pipo genes in the 20 samples assayed shared more than 92% nucleotide sequence similarity with the published sequences of PVY strains. Among the 20 pipo gene sequences, 13 polymorphic sites were detected, including 4 parsimony informative sites and 9 singleton variable sites. These results indicate that PVY pipo gene is highly conserved but some sequence variations exist. Further analyses suggest that the pipo gene encodes a hydrophilic protein without signal peptide and transmembrane region. The protein has theoretical isoelectric points (pI) ranging from 11.26 to 11.62 and contains three highly conserved regions, especially between aa 10 and 59. The protein is likely located in the mitochondria and has a-helix secondary structure. Bayesian inference of phylogenetic trees reveals that PVY isolates are clustered in the same branch with high posterior probability, while Sunflower chlorotic mottle virus (SoCMoV) and Pepper severe mosaic virus (PepSMV) are closely related, consisting with the classification of Potyvirus genera using other approaches. Our analyses suggest that the pipo gene can be a new marker for phylogenetic analysis of the genera. The results reported in this paper provide useful insights in the genetic variation and the evolution of PVY and can stimulate further research on structure and function of the PIPO protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.