Autonomous underwater vehicles (AUVs) are increasingly being applied to highly detailed survey and inspection tasks over large ocean regions. These vehicles are required to have underwater hovering and low-speed cruising capabilities, and energy-saving property to enable long-range missions. To this end, a combined depth control strategy is proposed in which an on-off type variable ballast system (VBS) is adopted for satisfactory hovering or fast descending/ascending without propulsion to reach the designated cruising depth, whereas the bow and stern fins act as the actuator to maintain the cruising depth for more energy saving. A hierarchical architecture-based VBS controller, which comprises a ballast water mass planner and an on-off mass flowrate controller, is developed to assure good hovering performance of the on-off type VBS. Both numerical studies and basin tests are conducted on a middle-sized AUV to verify the feasibility and validity of this depth control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.