The unimolecular chemiluminescent decomposition of unsubstituted dioxetanone was studied at the complete active space self-consistent field level of theory combined with the multistate second-order multiconfigurational perturbation theory energy correction. The calculations revealed interesting features. Two transition states, two conical intersections, and one intermediate stable biradical structure along the lowest energy reaction path were identified. It was noted that the conical intersections are found at or in very close proximity to the transition states. The first and second transition states correspond to O-O and C-C cleavages, respectively. In particular, a planar structure is supported by the (1)(sigma,sigma*) state during the O-O dissociation up to the first transition state and conical intersection. At this point the (1)(sigma,sigma*) state dissociation path bifurcates, corresponding to a torsion of the O-C-C-O angle. Simultaneously, the (1)(n,sigma*) state becomes lower in energy while still favoring a planar structure. As the lowest-energy reaction path proceeds toward the second transition state and conical intersection, the (1)(n,sigma*), (3)(n,sigma*), and (1)(sigma,sigma*) states are close in energy. This work suggests that the vibrational distribution at the first conical intersection and the interactions among the states as the reaction proceeds between the two transition states are the origin of the population of the chemiluminescent (n,sigma*) states.
Let it shine: New hypoxia-sensitive fluorescent probes were developed; they consist of a rhodamine moiety with an azo group directly conjugated to the fluorophore. Because of an ultrafast conformational change around the NN bond, the compounds are nonfluorescent under normoxia. However, under hypoxia, the azo group is reduced, and a strongly fluorescent rhodamine derivative is released.
CASSCF and CASPT2 studies on the reaction mechanism of the photochromic ring-opening process of a spiropyran (SP) (1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indoline], also known as BIPS) have been performed and possible excited-state C-O (and C-N) bond cleavage pathways and S1-to-S0 nonadiabatic transition channels have been explored. (1) The C-O bond dissociation in SP does not follow a conical-intersection mechanism that has been proposed in a model study with a simplified benzopyran. The CASSCF-optimized crossing points are actually avoided crossings with a large S1-S0 energy gap at the CASPT2 level; thus, they could not act as efficient S1-to-S0 funnels. (2) C-O bond cleavage paths on S1 leading to both the CCC (cis-cis-cis with respect to the configuration around α, β, γ) and TCC (trans-cis-cis) intermediates of merocyanine (MC) are barrierless, in line with the experimentally observed ultrafast formation of MC. (3) An unexpected low-energy hydrogen-out-of-plane (HOOP) valley on the (π→σ*) surface was located not far from the C-O bond cleavage path and was suggested to be an efficient S1-to-S0 nonadiabatic decay channel. Triggered by the active HOOP mode, the molecule can easily access the S1-HOOP valley and then make a transition to the S0 surface through the narrow S1-S0 gap that exists in an extended region. Nonadiabatic decay through a conical intersection on C-N dissociation path as well as the HOOP funnel is responsible for high internal conversion yields of SP. These findings shedding light on the complex mechanism of SP-MC interconversion provide fundamental information for design spiropyran-based photochromic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.