SummaryCentrioles are key structural elements of centrosomes and primary cilia. In mammals, only a few proteins including PLK4, CPAP (CENPJ), SAS6, CEP192, CEP152 and CEP135 have thus far been identified to be required for centriole duplication. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that is essential for mouse and zebrafish embryonic development and mutated in primary microcephaly. Here, we show that STIL localizes to the pericentriolar material surrounding parental centrioles. Its overexpression results in excess centriole formation. siRNA-mediated depletion of STIL leads to loss of centrioles and abrogates PLK4-induced centriole overduplication. Additionally, we show that STIL is necessary for SAS6 recruitment to centrioles, suggesting that it is essential for daughter centriole formation, interacts with the centromere protein CPAP and rapidly shuttles between the cytoplasm and centrioles. Consistent with the requirement of centrioles for cilia formation, Stil -/-mouse embryonic fibroblasts lack primary cilia -a phenotype that can be reverted by restoration of STIL expression. These findings demonstrate that STIL is an essential component of the centriole replication machinery in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.