With the extension of the egg-laying cycle, the rapid decline in egg quality at late laying period has aroused great concern in the poultry industry. Herein, we performed a genome-wide association study (GWAS) to identify genomic variations associated with egg quality, employing chicken 600 K high-density SNP arrays in a population of 1078 hens at 72 and 80 weeks of age. The results indicated that a genomic region spanning from 8.95 to 9.31 Mb (~0.36 Mb) on GGA13 was significantly associated with the albumen height (AH) and the haugh unit (HU), and the two most significant SNPs accounted for 3.12 ~ 5.75% of the phenotypic variance. Two promising genes, MSX2 and DRD1, were mapped to the narrow significant region, which was involved in embryonic and ovary development and found to be related to egg production, respectively. Moreover, three interesting genes, RHOA, SDF4 and TNFRSF4, identified from three significant loci, were considered to be candidate genes for egg shell colour. Findings in our study could provide worthy theoretical basis and technological support to improve late-stage egg quality for breeders.
The dynamic change in brown eggshell color as hens age has been observed, but much uncertainty still exists. We aimed to analyze the depth of eggshell color and quantity of protoporphyrin ΙΧ throughout the laying period to explore the reasons for color variation. In this study, 120 Rhode Island Red hens were used, and two eggs were collected from each individual at 26, 34, 42, 50, 60, and 70 wk of age. The eggshell color (L*, a*, b*), egg weight, eggshell dry weight, and protoporphyrin ΙΧ quantity in eggshell were measured for individual eggs. Our results showed that the intensity of brown eggshell color weaken as hens aged from 26 to 60 wk of age (L* gradually increased from 61.43 to 68.07), while eggshell lightness recovered slightly at 70 wk (L* = 64.77). The correlation analysis indicated that the content of protoporphyrin ΙΧ deposited in the eggshell was an important factor for lightness fading with the ageing process (the average r was 0.66, P < 0.01), while the egg weight had little impact on the eggshell color (the average r was 0.07, P > 0.05). The shade of the eggshell color (L* and a*) at the early laying period (26 or 34 wk) had a low correlation with the other age points (42, 50, 60, and 70 wk). However, high correlations between the shell color at 42 wk of age and subsequent ages (50, 60, and 70 wk) were found, suggesting that the intensity of eggshell color is more stable after egg-laying peaks (such as 42 wk of age). In conclusion, the intensity of brown eggshell color varies greatly among the whole laying cycle and breeders can choose the proper age for eggshell color measurements to ensure the degree of shell color in the late laying period.
Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57) would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 (SLC25A5) and down-regulated translocator protein (TSPO) would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF). In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.
BackgroundEfficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important. In the present study, we measured daily feed intake (FI), residual feed intake (RFI) and feed conversion ratio (FCR) of 808 hens during 81–82 weeks of age to evaluate genetic properties and then used a genome-wide association study (GWAS) to reveal the genetic determinants.ResultsThe heritability estimates for the investigated traits were medium and between 0.15 and 0.28 in both pedigree- and genomic-based estimates, whereas the genetic correlations among these traits were high and ranged from 0.49 to 0.90. Three genome-wide significant SNPs located on chromosome 1 (GGA1) were detected for FCR. Linkage disequilibrium (LD) and conditional GWA analysis indicated that these 3 SNPs were highly correlated with one another, located at 13.55–45.16 Kb upstream of gga-miR-15a. Results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis in liver tissue showed that the expression of gga-miR-15a was significantly higher in the high FCR birds than that in the medium or low FCR birds. Bioinformatics analysis further revealed that gga-mir-15a could act on many target genes, such as forkhead box O1 (FOXO1) that is involved in the insulin-signaling pathway, which influences nutrient metabolism in many organisms. Additionally, some suggestively significant variants, located on GGA3 and GGA9, were identified to associate with FI and RFI.ConclusionsThis GWA analysis was conducted on feed intake and efficiency traits for chickens and was innovative for application in the late laying period. Our findings can be used as a reference in the genomic breeding programs for increasing the efficiency performance of old hens and to improve our understanding of the molecular determinants for feed efficiency.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4092-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.