The inductive power transmission system is applied to urban rail transit. Due to the limitations of the volume and coupling coefficient of the inductive coupling mechanism and the fact that the fluctuation of air gap in its movement will cause the fluctuation of mutual inductance value, DCDC booster link should be added to the side, rectifying side, to improve the output voltage level and stability. At present, most of the existing control strategies are based on the original side information communication. However, in the application of dynamic wireless charging in urban rail transit, the primary and secondary side coils are in the process of relative movement, so it is relatively difficult to establish reliable real-time communication, and it is easy to be interfered by electromagnetic transmission process, resulting in large errors. This paper analyzes the relationship between load and efficiency of IPT system applied to urban rail transit in detail and obtains the optimal load matching strategy of optimal efficiency. At the same time, an independent control strategy is proposed to eliminate the information communication of the primary and secondary sides and realize decoupling control. Finally, a simulation model is built to verify the effectiveness of the control strategy.
As a new type of urban transit vehicle, Non-catenary trams using inductive power transmission technology get rid of the traditional overhead catenary. In engineering applications, coils assembled on the different tram bodies have inevitable differences due to the restrictions on the production process and other factors. Research shows tiny differences in self-inductance always lead to system detuning so as to causes an extreme descent of the system power factor. From the perspective of hardware design, the paper analyzes the system architecture and coil configuration for the dynamic charging trams with considering cost, system reliability, etc. Then, for the problem of power factor reduction caused by the differences in the self-inductance of the secondary windings, the article establishes a mathematical model with the maximum power factor as the goal and system parameters as constraints. And a complete system parameters design method is proposed. Finally, the global design and optimization of tram's electromagnetic coupling mechanism parameters are performed using the group method. The simulation result indicates that the method can meet the requirements of system operation and has a higher tolerance to the self-inductance differences of the secondary coils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.