Recombinase aided amplification (RAA) is an emerging isothermal amplification method used for detecting various pathogens. However, RAA requires a complex and long probe to ensure high sensitivity during fluorescence assay. TaqMan probe used for quantitative PCR (qPCR) is simple and universal. Herein, we developed a new approach for detecting nucleic acids of pathogens, known as RAP (Recombinase aided PCR). The method combines RAA and qPCR to ensure a rapid and highly sensitive detection using a conventional qPCR device. RAP is a two-stage amplification process performed in a single tube within 1 hour. The method involves an RAA reaction for 10 min at 39°C (first stage) followed by 15 cycles of qPCR (second stage). Using human adenovirus 3 (HADV3) and human adenovirus 7 (HADV7) plasmids, the sensitivities of RAP assays for detecting HADV3 and HADV7 were 6 and 17 copies per reaction, respectively. The limit of RAP detection was at least 16-fold lower than the corresponding qPCR, and no-cross reaction with other respiratory viruses was observed. The results of RAP analysis revealed 100% consistency with qPCR assay. This study shows that RAP assay is a rapid, specific, and highly sensitive detection method with a potential for clinical and laboratory application.
ObjectivesThe World Health Organization (WHO) Global tuberculosis Report 2021 stated that rifampicin-resistant tuberculosis (RR-TB) remains a major public health threat. However, the in-practice diagnostic techniques for RR-TB have a variety of limitations including longer time, lack of sensitivity, and undetectable low proportion of heterogeneous drug resistance.MethodsHere we developed a multiplex LNA probe-based RAP method (MLP-RAP) for more sensitive detection of multiple point mutations of the RR-TB and its heteroresistance. A total of 126 clinical isolates and 78 sputum samples collected from the National Tuberculosis Reference Laboratory, China CDC, were tested by MLP-RAP assay. In parallel, qPCR and Sanger sequencing of nested PCR product assay were also performed for comparison.ResultsThe sensitivity of the MLP-RAP assay could reach 5 copies/μl using recombinant plasmids, which is 20 times more sensitive than qPCR (100 copies/μl). In addition, the detection ability of rifampicin heteroresistance was 5%. The MLP-RAP assay had low requirements (boiling method) for nucleic acid extraction and the reaction could be completed within 1 h when placed in a fluorescent qPCR instrument. The result of the clinical evaluation showed that the MLP-RAP method could cover codons 516, 526, 531, and 533 with good specificity. 41 out of 78 boiled sputum samples were detected positive by MLP-RAP assay, which was further confirmed by Sanger sequencing of nested PCR product assay, on the contrary, qPCR was able to detect 32 samples only. Compared with Sanger sequencing of nested PCR product assay, both the specificity and sensitivity of the MLP-RAP assay were 100%.ConclusionMLP-RAP assay can detect RR-TB infection with high sensitivity and specificity, indicating that this assay has the prospect of being applied for rapid and sensitive RR-TB detection in general laboratories where fluorescent qPCR instrument is available.
Encephalitis and meningitis are notable global public health concerns, especially among infants or children. Metagenomic next-generation sequencing (mNGS) has greatly advanced our understanding of the viruses responsible for these diseases. However, the detection rate of the aetiology remains low. We conducted RNA sequencing and virome analysis on cerebrospinal fluid (CSF) and serum samples commonly used in the clinical diagnosis to detect viral pathogens. In total, 226 paired CSF and serum samples from 113 children with encephalitis and meningitis were enrolled. The results showed that the diversity of viruses was higher in CSF, with a total of 12 viral taxa detected, including one case each of herpesvirus, coronavirus and enterovirus, and six cases of adenovirus related to human diseases. In contrast, the Anelloviridae was the most abundant viral family detected in serum, and only a few samples contained human viral pathogens, including one case of enterovirus and two cases of adenovirus. The detection rate for human viral pathogens increases to 10.6 %(12/113) when both types of samples are used simultaneously, compared to CSF along 7.9 % (9/113) or serum alone 2.6 % (3/113). However, we did not detect these viruses simultaneously in paired samples from the same case. These results suggest that CSF samples still have irreplaceable advantages for using mNGS to detect viruses in patients with meningitis and encephalitis, and serum can supplement to improve the detection rate of viral encephalitis and meningitis. The findings of this study could help improve the etiological diagnosis, clinical management and prognosis of patients with meningitis and encephalitis in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.