Understanding the mechanisms underlying evasive resistance in cancer is an unmet medical need to improve the efficacy of current therapies. In this study, a combination of shRNA-mediated synthetic lethality screening and transcriptomic analysis revealed the transcription factors YAP/TAZ as key drivers of Sorafenib resistance in hepatocellular carcinoma (HCC) by repressing Sorafenib-induced ferroptosis. Mechanistically, in a TEAD-dependent manner, YAP/TAZ induce the expression of SLC7A11, a key transporter maintaining intracellular glutathione homeostasis, thus enabling HCC cells to overcome Sorafenib-induced ferroptosis. At the same time, YAP/TAZ sustain the protein stability, nuclear localization, and transcriptional activity of ATF4 which in turn cooperates to induce SLC7A11 expression. Our study uncovers a critical role of YAP/TAZ in the repression of ferroptosis and thus in the establishment of Sorafenib resistance in HCC, highlighting YAP/TAZ-based rewiring strategies as potential approaches to overcome HCC therapy resistance.
Highlights d Lineage tracing of partial and full EMT cells in breast cancer metastasis d Partial EMT cells cycle between hybrid EMT and epithelial stages d Partial, but not full, EMT cells are required for metastasis formation d Both partial and full EMT cells contribute to chemoresistance Authors Fabiana L€ uo ¨nd, Nami Sugiyama,
SummaryBackgroundPhosphorylation of the transcriptional coactivator YAP1 is a key event in defining Hippo signaling outputs. Previous studies demonstrated that phosphorylation of YAP1 at serine 127 (S127) sequesters YAP1 in the cytoplasm and consequently inhibits YAP1 transcriptional activity. Mammalian tissue-culture experiments suggest that downstream of MST1/2 signaling, LATS1/2 function as YAP1-S127 kinases. However, studies of Mst1/2 knockout mouse models revealed that the identity of the physiological YAP1-S127 kinase(s) in certain tissues, such as the intestine, remains unknown.ResultsWe show that mammalian NDR1/2 kinases phosphorylate YAP1 on S127 and thereby negatively regulate YAP1 activity in tissue-cultured cells. By studying NDR1/2-deficient mice, we demonstrate the in vivo relevance of NDR1/2-mediated regulation of YAP1. Specifically, upon loss of NDR1/2 in the intestinal epithelium, endogenous S127 phosphorylation is decreased whereas total YAP1 levels are increased. Significantly, ablation of NDR1/2 from the intestinal epithelium renders mice exquisitely sensitive to chemically induced colon carcinogenesis. Analysis of human colon cancer samples further revealed that NDR2 and YAP1 protein expression are inversely correlated in the majority of samples with high YAP1 expression. Collectively, we report NDR1/2 as physiological YAP1-S127 kinases that might function as tumor suppressors upstream of YAP1 in human colorectal cancer.ConclusionsWe establish mammalian NDR1/2 as bona fide kinases that target YAP1 on S127 in vitro and in vivo. Our findings therefore have important implications for a broad range of research efforts aimed at decoding and eventually manipulating YAP1 biology in cancer settings, regenerative medicine, and possibly also noncancer human diseases.
A B S T R A C TChronic inflammation is a major cause of human cancer. Clinical cancer therapies against inflammatory risk factors are strategically determined. To rationally guide a novel drug development, an improved mechanistic understanding on the pathological connection between inflammation and carcinogenesis is essential. PI3K-PKB signaling axis has been extensively studied and shown to be one of the key oncogenic drivers in most types of cancer. Pharmacological inhibition of the components along this signaling axis is of great interest for developing novel therapies. Interestingly, emerging studies have shown a close association between PKB activation and inflammatory activity in the vicinity of the tumor, and either blockade of PKB or attenuation of para-tumoral inflammation reveals a mutual-interactive pattern through pathway crosstalk. In this review, we intend to discuss recent advances of PKB-regulated chronic inflammation and its potential impacts on tumor development.
The serine and threonine kinase MST1 is the mammalian homolog of Hippo. MST1 is a critical mediator of the migration, adhesion, and survival of T cells; however, these functions of MST1 are independent of signaling by its typical effectors, the kinase LATS and the transcriptional coactivator YAP. The kinase NDR1, a member of the same family of kinases as LATS, functions as a tumor suppressor by preventing T cell lymphomagenesis, which suggests that it may play a role in T cell homeostasis. We generated and characterized mice with a T cell-specific double knockout of Ndr1 and Ndr2 (Ndr DKO). Compared with control mice, Ndr DKO mice exhibited a substantial reduction in the number of naïve T cells in their secondary lymphoid organs. Mature single-positive thymocytes accumulated in the thymus in Ndr DKO mice. We also found that NDRs acted downstream of MST1 to mediate the egress of mature thymocytes from the thymus, as well as the interstitial migration of naïve T cells within popliteal lymph nodes. Together, our findings indicate that the kinases NDR1 and NDR2 function as downstream effectors of MST1 to mediate thymocyte egress and T cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.