Aim: This study aimed to predict progression-free survival (PFS) in patients with early glottic cancer using radiomic features on dual-energy computed tomography iodine maps. Methods: Radiomic features were extracted from arterial and venous phase iodine maps, and radiomic risk scores were determined by univariate Cox proportional hazards regression analysis and least absolute shrinkage and selection operator regression with tenfold cross-validation. The Kaplan–Meier method was used to evaluate the association between radiomic risk scores and PFS. Results: Patients were stratified into low-risk and high-risk groups using radiomics, the PFS corresponding rates with statistical significance between the two groups. The high-risk group showed better survival, benefiting from laryngectomy. Conclusion: Radiomics could provide a promising biomarker for predicting the PFS of early glottic cancer patients.
Objectives To establish and validate a predictive model integrating with clinical and dual-energy CT (DECT) variables for individual recurrence-free survival (RFS) prediction in early-stage glottic laryngeal cancer (EGLC) after larynx-preserving surgery. Methods This retrospective study included 212 consecutive patients with EGLC who underwent DECT before larynxpreserving surgery between January 2015 and December 2018. Using Cox proportional hazard regression model to determine independent predictors for RFS and presented on a nomogram. The model's performance was assessed using Harrell's concordance index (C-index), time-dependent area under curve (TD-AUC) plot, and calibration curve. A risk stratification system was established using the nomogram with median scores of all cases to divide all patients into two prognostic groups. Results Recurrence occurred in 39/212 (18.4%) cases. Normalized iodine concentration in arterial (NICAP) and venous phases (NICVP) were verified as significant predictors of RFS in multivariate Cox regression (hazard ratio [HR], 4.2; 95% confidence interval [CI]: 2.3, 7.7, p < .001 and HR, 3.0; 95% CI: 1.5, 5.9, p = .002, respectively). Nomogram based on clinical and DECT variables was better than did only clinical variables. The prediction model proved well-calibrated and had good discriminative ability in the training and validation samples. A risk stratification system was built that could effectively classify EGLC patients into two risk groups. Conclusions DECT could provide independent RFS indicators in patients with EGLC, and the nomogram based on DECT and clinical variables was useful in predicting RFS at several time points. Key Points • Dual-energy CT(DECT) variables can predict recurrence-free survival (RFS) after larynx-preserving surgery in patients with early-stage glottic laryngeal cancer (EGLC). • The model that integrates clinical and DECT variables predicted RFS better than did only clinical variables.• A risk stratification system based on the nomogram could effectively classify EGLC patients into two risk groups.Huanlei Zhang and Ying Zou contributed equally as co-first authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.