Twin-core fiber (TCF)-based sensor was proposed for non-invasive vital sign monitoring, including respiration and heartbeat. The TCF was homemade and the corresponding sensor was fabricated by sandwiching single-mode fiber (SMF) on both ends. The offset distance between SMF and TCF was optimized while the length of TCF was identified from preliminary vital sign measurement results. Then, the TCF-based sensor was attached under a mattress to realize non-invasive vital sign monitoring. Both respiration and heartbeat signal can be obtained simultaneously, which is consistent with the reference signals. For further application, post-exercise physiological activitity characterization were realized based on this vital sign monitoring system. In discussion, mode coupling in TCF was analyzed and utilized for curvature sensing with achieved sensitivity as high as 18 nm/m −1 , which supported its excellent performance for vital signs monitoring. In conclusion, the TCF-based vital signs monitors can be a promising candidate for healthcare and biomedical applications.
Few-mode and multi-core fibers are proposed and demonstrated for contactless vital signs monitoring in this paper. In-line optical fiber interferometers using few-mode and multi-core fibers are designed and offset splicing is utilized for mode excitation. Extinction ratio and insertion loss are analyzed experimentally under different offset distances. The fabricated in-line interferometers are packaged under the mattress to realize contactless vital signs signals collection. By using filtering techniques, both respiration and heartbeat signals can be recovered successfully, and respiration as well as heartbeat ratio are obtained. Mode excitation and interference are theoretically analyzed in few-mode fiber while curvature sensing experiments using multi-core fiber interferometer are performed to verify its excellent performance on vital signs monitoring. The successful demonstration on contactless vital signs monitoring makes few-mode and multi-core fibers promising candidates for healthcare applications.
We proposed a novel torsion sensor based on inter-core mode coupling in seven-core fiber (SCF). The torsion sensor is fabricated by tapering a commercially available SCF spliced with two single mode fibers. Waist diameter and length of the taper structure were experimentally optimized to achieve good transmission spectrum. Based on this structure, the torsion measurement was conducted, and the experimental results demonstrated that the transmission spectrum shows a red shift with the fiber twist. The torsion sensitivity increases with the twisting angle, which can achieve as high as 1.00 nm/°. The direction of wavelength shift was observed to be opposite when twisting the tapered SCF in clockwise and counter-clockwise direction, demonstrating its capability to discriminate the rotation orientation. Moreover, all the measurements were repeated in attempts to confirm its stable performance as well as high accuracy. Mode coupling dynamics and theory of optical anisotropy in twisted fiber are adopted to discuss the sensitivity performance, which agrees well with experimental results. The novel torsion sensor could provide a promising candidate for the applications requiring accurate rotation.
Cardiovascular diseases (CVDs) are very common in modern society, such as atherosclerosis, hypertension, etc., which have a great impact on heart function. Therefore, hospitalization monitoring alone is far from enough. Long-term monitoring of the heart is needed in daily life. The technology of non-invasive monitoring of the cardiovascular system can meet the needs of long-term monitoring of the heart condition, helping to promote the improvement of lifestyle and daily care, reducing the overall risk of developing CVDs. The purpose of this study is to investigate the cardiac response after different exercises using a 3×3 demodulation scheme-based ballistocardiography (BCG) monitoring system. A fiber optic sensor (FOS)-based smart cushion is used to replace the traditional inconvenient electrocardiogram (ECG) for heart rate variability (HRV). The correlation between BCG inter-beat interval (IBI) and ECG IBI is 0.9862, and the RMSE is 0.0139. The BCG signal can assess cardiac contractility by analyzing RJ interval with ECG, which is a practical alternative to the pre-ejection period (PEP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.