Objective: This study explored the potential function of miR-452-5p in hepatocellular carcinoma (HCC) and clarified the mechanism underlying HCC progression. Materials & methods: Real-time quantitative PCR was used to detect miR-452-5p and COLEC10 mRNA expression in HCC, western blot was performed to test COLEC10 protein expression. The regulatory mechanism of miR-452-5p/COLEC10 in HCC cells was explored using CCK-8, wound healing assay, Transwell and dual-luciferase reporter assay. Results: MiR-452-5p was greatly upregulated in HCC cells, and it served as an oncogene playing an active role in HCC cell proliferation, migration and invasion. COLEC10 was identified as the target of miR-452-5p in HCC attenuating the promoting effect of miR-452-5p on HCC cells upon overexpression. Conclusion: MiR-452-5p can promote the progression of HCC via targeting COLEC10.
Hepatocellular carcinoma (HCC) is a cancer with relatively high mortality, yet little attention has been devoted for related prognostic biomarkers. This study analyzed differential expression of m5C RNA methyltransferase-related genes in normal samples and tumors samples in TCGA-LIHC using Wilcoxon test. K-means consensus clustering analysis was implemented to subdivide samples. Independent prognostic factors were screened by univariate and multivariate Cox regression analyses. KEGG pathway enrichment analysis was performed on the screened independent prognostic factor using GSEA tools. qPCR was conducted to test mRNA expression of key m5C RNA methyltransferase-related genes in tissues and cells. There were 7 m5C RNA methyltransferase-related genes (NOP2, NSUN4, etc.) differentially expressed in HCC tumor tissues. HCC samples were classified into 3 subgroups through clustering analysis according to the expression mode of m5C RNA methyltransferase-related genes. It was also discovered that patients in different subgroups presented significant differences in survival rate and distribution of grade. Additionally, NOP2, NSUN4 and NSUN5 expression notable varied in different grades. Through regression analyses combined with various clinical pathological factors, it was displayed that NSUN4 could work as an independent prognostic factor. KEGG analysis showed that NSUN4 mainly enriched in signaling pathways involved in ADHERENS JUNCTION, RNA DEGRADATION, MTOR SIGNALING PATHWAY, COMPLEMENT and COAGULATION CASCADES. As examined by qPCR, NSUN4 was conspicuously upregulated in HCC patient’s tissues and cells. Altogether, our study preliminarily developed a novel biomarker that could be independently used in prognosis of HCC, which may provide a new direction for the study of related molecular mechanism or treatment regimen.
Background: As one of the most common cancers in the world, hepatocellular carcinoma (HCC) usually has a poor prognosis. Many HCC patients are usually diagnosed at advanced stages. Therefore, new potential biomarkers for the diagnosis and prognosis of HCC are urgently needed. More and more studies have shown that miR-92a-3p can regulate the occurrence and development of a variety of cancers, but its clinical significance and molecular mechanism in HCC are still elusive. Here, we tried to clarify the regulatory mechanism of miR-92a-3p in HCC. Methods: In this study, we conducted qRT-PCR and revealed that miR-92a-3p was notably upregulated in HCC cells. MTT, flow cytometry, wound healing, Transwell invasion assays and western blot were conducted to uncover that overexpressed miR-92a-3p could boost the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of HCC cells while inhibiting cell apoptosis. In addition, the proteins associated with PI3K/AKT/mTOR pathway were also detected by western blot. Results: It was suggested that miR-92a-3p could activate the PI3K/AKT/mTOR signaling pathway. Conclusion: These results suggest that miR-92a-3p plays a tumor-promoting role in HCC and may be a potential biomarker for the diagnosis and prognosis of HCC.
Objective: To explore the function of the miR-18a-5p/CPEB3 axis in regulating the occurrence of hepatocellular carcinoma (HCC). Methods: Differentially expressed miRNAs and mRNAs were acquired by bioinformatics analysis. qRT-PCR was used for miR-18a-5p and CPEB3 mRNA expression detection. Cell functional assays were implemented to examine the biological functions of HCC cells. The binding relationship between miR-18a-5p and CPEB3 was verified by a dual luciferase assay. Results: In HCC, miR-18a-5p was remarkably highly expressed, while CPEB3 was markedly lowly expressed. HCC cell progression was facilitated after cells transfecting miR-18a-5p mimic, whereas silencing miR-18a-5p caused the opposite result. Overexpressing CPEB3 could restore promoting effect of miR-18a-5p on the growth of HCC cells. Conclusion: Oncogene miR-18a-5p accelerates malignant phenotype by suppressing CPEB3. MiR-18a-5p/CPEB3 axis in HCC identified in this study provides a new target for HCC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.