Our previous studies showed that ZBTB7A played an important role in promoting nasopharyngeal carcinoma (NPC) progression. However, molecular mechanisms of different levels of ZBTB7A are still unclear. It is necessary to search molecular markers which are closely connected with ZBTB7A. We selected NPC sublines CNE2 with stably transfecting empty plasmid (negative control, NC) and short hair RNA (shRNA) plasmid targeting ZBTB7A as research objectives. Microarray was used to screen differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) via shRNA-CNE2 versus NC-CNE2. Quantitative PCR (qPCR) was used to validate lncRNAs and mRNAs from the sublines, chronic rhinitis, and NPC tissues. Bioinformatics was used to analyze regulatory pathways which were connected with ZBTB7A. The 1501 lncRNAs (long noncoding RNAs) and 1275 differentially expressed mRNAs were upregulated or downregulated over 2-fold. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the upregulated or downregulated carbohydrate and lipid metabolisms probably involved in carcinogenicity of shRNA-CNE2 (P-value cut-off was 0.05). In order to find the molecular mechanisms of ZBTB7A, we validated 12 differentially expressed lncRNAs and their nearby mRNAs by qPCR. Most of the differentially expressed mRNAs are closely connected with carbohydrate and lipid metabolisms in multiply cancers. Furthermore, part of them were validated in NPC and rhinitis tissues by qPCR. As a result, NR_047538, ENST00000442852, and fatty acid synthase (FASN) were closely associated with NPC. ZBTB7A had a positive association with NR_047538 and negative associations with ENST00000442852 and FASN. The results probably provide novel candidate biomarkers for NPC progression with different levels of ZBTB7A.
The results demonstrated the reverse association between the expression of ZBTB7A and the tumorigenicity of NPC. We postulate that some oncogenic pathways, which are suppressed by ZBTB7A, will vicariously promote the proliferation and progression of NPC when ZBTB7A is decreased.
Our previous studies have elucidated a possible connection between long intergenic non-protein coding RNA 2570 (LINC02570) and nasopharyngeal carcinoma (NPC). However, the precise mechanism by which LINC02570 promotes NPC remains unknown. We used quantitative polymerase chain reaction (qPCR) to detect LINC02570 expression in nasopharyngeal cell lines, NPC tissues, and chronic rhinitis tissues. Subcellular LINC02570 localization was confirmed by fluorescence in situ hybridization (FISH). The effects of LINC02570 stable knockdown and overexpression on viabillity, proliferation, migration, and invasion were analyzed using 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl-2-H-Tetrazolium bromide (MTT), a colorimetric focus-formation assay, a wound healing assay, and transwell assays. RNA crosstalk analysis in silico predicted microRNA-4649-3p (miR-4649-3p) binding to LINC02570 or sterol regulatory element binding transcription factor 1 (SREBF1). A dual luciferase reporter assay was used to confirm potential interactions. Sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression were detected by western blotting. The results suggest that LINC02570 is upregulated in late clinical stage NPC patients, and promotes NPC progression by adsorbing miR-4649-3p to up-regulate SREBP1 and FASN. This study elucidates a potential chemotherapeutic target involved in lipid metabolism in NPC.
To study the differentiated expression of the proto-oncogene Pokemon in nasopharyngeal carcinoma (NPC) cell lines and tissues, mRNA and protein expression levels of CNE1, CNE2, CNE3 and C666-1 were detected separately by reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and Western-blotting. The immortalized nasopharyngeal epithelial cell line NP69 was used as a control. The Pokemon protein expression level in biopsy specimens from chronic rhinitis patients and undifferentiated non keratinizing NPC patients was determined by Western-blotting and arranged from high to low: C666-1>CNE1>CNE2> CNE3>NP69. The Pokemon mRNA expression level was also arranged from high to low: CNE1>CNE2>NP69>C666-1>CNE3. Pokemon expression of NP69 and C666-1 obviously varied from mRNA to protein. The Pokemon protein level of NPC biopsy specimens was obviously higher than in chronic rhinitis. The data suggest that high Pokemon protein expression is closely associated with undifferentiated non-keratinizing NPC and may provide useful information for NPC molecular target therapy.
BackgroundMany hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood.MethodsA total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype.ResultsWell-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region.ConclusionsTwo mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These findings not only extend the OTOF gene mutation spectrum for ANSD but also indicate that whole-exome sequencing is an effective approach to clarify the genetic characteristics in non-syndromic ANSD patients. Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-017-0400-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.