Circulating tumor cells (CTCs) are extremely scarce cells which cut off from a primary tumor and percolate into the circulation of blood flow and are, thus, critical for precise cancer detection and treatment. Deterministic lateral displacement (DLD) which exploits asymmetric splitting of laminar flow around the implanted microposts has displayed trustworthy capabilities in separating cells of varying sizes. In this research work, a microfluidic channel consisting of three symmetrically aligned inlets and outlets and embedded circular posts has been proposed which effectively separates the CTCs from lymphocytes utilizing the concept of DLD. Using a commercial software COMSOL Multiphysics 5.4, the design of the proposed microchannel has been simulated and analyzed considering an injected blood sample containing massive CTCs and slim WBCs of radii 13.5 µm and 6 µm, respectively. The proposed model of microchannel isolates the CTCs from WBCs at a comparatively higher sample mass flow rate of 4 × 10–6 kg/s and Reynolds number of 8.9 thereby operating efficiently at higher throughput, and offers excellent linearity in terms of velocity magnitude, pressure, shear rate and Reynolds number. The computational analysis of the proposed microchannel reveals that it can isolate CTCs from WBCs with better separation ratio, offers higher throughput, reduces possibilities of clogging and maintains better uniformity of pressure distribution and other flow parameters when compared with existing microchannel designs. The maximum separation ratio for CTCs and WBCs has been obtained as 84% and 96%, respectively.
Biofluids remain a difficult issue in some drug delivery processes for separation of bioparticles through microchannels. This chapter reviews the techniques which have been substantiated and proven helpful for the separation of particles depending on mass and size with some constraints of high throughput. In this study, a key focus will be on separation criterion by patterning of a microchannel and utilize sieve type channels based on spherical bioparticles. The first part focuses on the designing of the pattern for issues of the network like clogging and theoretical experiments by both hydrodynamic and other passive methods for sorting/separation. The second part focuses on the simulations for separation for small and larger bio particles depending on mass and size, samples of blood and other Klebsiella infected fluidic samples for the experiment. The theme provided for mass and size-based separation is simple and can accomplish operations in microfluidics for several biological experiments, diagnosis approaches and zoological researches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.