A recurring feature of innate immune receptor signaling is the self-assembly of signaling proteins into oligomeric complexes. The Myddosome is an oligomeric complex that is required to transmit inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for how Myddosome proteins self-assemble and regulate intracellular signaling remains poorly understood. Here, we developed a novel assay to analyze the spatiotemporal dynamics of IL1R and Myddosome signaling in live cells. We found that MyD88 oligomerization is inducible and initially reversible. Moreover, the formation of larger, stable oligomers consisting of more than four MyD88s triggers the sequential recruitment of IRAK4 and IRAK1. Notably, genetic knockout of IRAK4 enhanced MyD88 oligomerization, indicating that IRAK4 controls MyD88 oligomer size and growth. MyD88 oligomer size thus functions as a physical threshold to trigger downstream signaling. These results provide a mechanistic basis for how protein oligomerization might function in cell signaling pathways.
Signaling pathways can produce digital outputs that are invariant and analogue outputs that scale with the amount of stimulation. In IL-1 receptor (IL-1R) signaling both types of outputs require the Myddosome, a multi-protein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling. However, the ways in which these signals are spatially and temporally regulated to drive switch-like and proportional outcomes is not understood. We find that during IL-1R signaling, Myddosomes dynamically re-organize into large, multi-Myddosome clusters at the cell membrane. Blockade of Myddosome clustering using nanoscale extracellular barriers reduces NF-kB activation. We find that Myddosomes function as a scaffold that assembles an NF-kB signalosome consisting of E3-ubiquitin ligases TRAF6 and LUBAC, K63/M1-linked polyubiquitin chains, phospho-IKK, and phospho-p65. This signalosome preferentially assembles at regions of high Myddosome density, which enhances the recruitment of TRAF6 and LUBAC. Extracellular barriers that restrict Myddosome clustering perturbed the recruitment of both ligases. We found that LUBAC was especially sensitive to clustering, with a sevenfold lower recruitment to single Myddosomes than clustered Myddosomes. This data reveals that the clustering behavior of Myddosome provides the basis for digital and analogue IL-1R signaling.
A recurring feature of innate immune receptor signaling is the self-assembly of signaling proteins into oligomeric complexes. The Myddosome is an oligomeric complex that is required to transmit inflammatory signals from TLR/IL1Rs and consists of MyD88 and IRAK family kinases. However, the molecular basis for how Myddosome proteins self-assemble and regulate intracellular signaling remains poorly understood. Here, we developed a novel assay to analyze the spatiotemporal dynamics of IL1R and Myddosome signaling in live cells. We found that MyD88 oligomerization is inducible and initially reversible. Moreover, the formation of larger, stable oligomers consisting of more than 4 MyD88s triggers the sequential recruitment of IRAK4 and IRAK1. Notably, genetic knockout of IRAK4 enhanced MyD88 oligomerization, indicating that IRAK4 controls MyD88 oligomer size and growth. MyD88 oligomer size thus functions as a physical threshold to trigger downstream signaling. These results provide a mechanistic basis for how protein oligomerization might function in cell signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.