Excessive activation of hepatic stellate cells (HSCs) is a key step in liver fibrogenesis. Here we report that CUG-binding protein 1 (CUGBP1) expression is elevated in HSCs and positively correlates with liver fibrosis severity in human liver biopsies. Transforming growth factor-beta (TGF-β) selectively increases CUGBP1 expression in cultured HSCs in a p38 mitogen-activated protein kinase (MAPK)-dependent manner. Knockdown of CUGBP1 inhibits alpha smooth muscle actin (α-SMA) expression and promotes interferon gamma (IFN-γ) production in HSCs in vitro. We further show that CUGBP1 specifically binds to the 3′ untranslated region (UTR) of human IFN-γ mRNA and promotes its decay. In mice, knockdown of CUGBP1 alleviates, whereas its overexpression exacerbates, bile duct ligation (BDL)-induced hepatic fibrosis. Therefore, CUGBP1-mediated IFN-γ mRNA decay is a key event for profibrotic TGF-β-dependent activation of HSCs, and inhibiting CUGBP1 to promote IFN-γ signalling in activated HSCs could be a novel strategy to treat liver fibrosis.
Current treatment of recurrent glioblastoma multiforme (GBM) demands dose-intense temozolomide (TMZ), a prodrug of 5-(3-methyltriazen-1-yl) imidazole-4-carboxamide (MTIC), based on the spontaneous hydrolysis of TMZ at basic pH. However, how to control the activity of MTIC remains unknown, which poses a particular challenge to search a reliable MTIC receptor. We reported that copper, for the first time, is found to recognize and bind MTIC in the process of TMZ degradation, which means copper can play an important role in enhancing the bioavailability of MTIC derived from TMZ. Using apoferritin as a model copper-bound protein, we studied the copper–TMZ interaction in protein and observed efficient MTIC immobilization with high binding efficiency (up to 92.9% based on original TMZ) and capacity (up to 185 MTIC moieties per protein). The system was stable against both alkaline and acidic pH and could be activated by glutathione to liberate MTIC, which paves a way to deliver a DNA-alkylating agent for both TMZ-sensitive and TMZ-resistant GBM chemotherapy. Our study provides a new insight for understanding the potential relationship between the special GBM microenvironment (specific copper accumulation) and the therapeutic effect of TMZ.
Psoriasis is a complex chronic inflammatory skin disease with unclear molecular mechanisms. We found that the Src homology‐2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) was highly expressed in both psoriatic patients and imiquimod (IMQ)‐induced psoriasis‐like mice. Also, the SHP2 allosteric inhibitor SHP099 reduced pro‐inflammatory cytokine expression in PBMCs taken from psoriatic patients. Consistently, SHP099 significantly ameliorated IMQ‐triggered skin inflammation in mice. Single‐cell RNA sequencing of murine skin demonstrated that SHP2 inhibition impaired skin inflammation in myeloid cells, especially macrophages. Furthermore, IMQ‐induced psoriasis‐like skin inflammation was significantly alleviated in myeloid cells (monocytes, mature macrophages, and granulocytes)—but not dendritic cells conditional SHP2 knockout mice. Mechanistically, SHP2 promoted the trafficking of toll‐like receptor 7 (TLR7) from the Golgi to the endosome in macrophages by dephosphorylating TLR7 at Tyr1024, boosting the ubiquitination of TLR7 and NF‐κB‐mediated skin inflammation. Importantly, Tlr7 point‐mutant knock‐in mice showed an attenuated psoriasis‐like phenotype compared to wild‐type littermates following IMQ treatment. Collectively, our findings identify SHP2 as a novel regulator of psoriasis and suggest that SHP2 inhibition may be a promising therapeutic approach for psoriatic patients.
Aberrant activation of the NLRP3 inflammasome contributes to the onset and progression of various inflammatory diseases, making it a highly desirable drug target. In this study, we screened a series of small compounds with anti-inflammatory activities and identified a novel NLRP3 inflammasome inhibitor, AI-44, a curcumin analogue that selectively inhibited signal 2 but not signal 1 of NLRP3 inflammasome activation. We demonstrated that AI-44 bound to peroxiredoxin 1 (PRDX1) and promoted the interaction of PRDX1 with pro-Caspase-1 (CASP1), which led to the suppression of association of pro-CASP1 and ASC. Consequently, the assembly of the NLRP3 inflammasome was interrupted, and the activation of CASP1 was inhibited. Knockdown of PRDX1 significantly abrogated the inhibitory effect of AI-44 on the NLRP3 inflammasome. Importantly, AI-44 alleviated LPS-induced endotoxemia in mice via suppressing NLRP3 inflammasome activation. Taken together, our work highlighted PRDX1 as a negative regulator of NLRP3 inflammasome activation and suggested AI-44 as a promising candidate compound for the treatment of sepsis or other NLRP3 inflammasome-driven diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.