ObjectiveBased on a unique cohort of clinically suspect arthralgia (CSA) patients, we analysed which combinations of MRI features at onset were predictive for rheumatoid arthritis (RA) development. This was done to increase our comprehension of locations of RA onset and improve the predictive accuracy of MRI in CSA.MethodsIn the discovery cohort, 225 CSA patients were followed on clinical arthritis development. Contrast-enhanced 1.5 T MRIs were made of unilateral metacarpophalangeal (MCP) (2–5), wrist, and metatarsophalangeal (1–5) joints at baseline and scored for synovitis, tenosynovitis, and bone marrow edema. Severity, number, and combinations of locations (joint/tendon/bone) with subclinical inflammation were determined, with symptom-free controls of similar age category as reference. Cox regression was used for predictor selection. Predictive values were determined at 1 year follow-up. Results were validated in 209 CSA patients.ResultsIn both cohorts, 15% developed arthritis < 1 year. The multivariable Cox model selected presence of MCP-extensor peritendinitis (HR 4.38 (2.07–9.25)) and the number of locations with subclinical inflammation (1–2 locations HR 2.54 (1.11–5.82); ≥ 3 locations HR 3.75 (1.49–9.48)) as predictors. Severity and combinations of inflammatory lesions were not selected. Based on these variables, five risk categories were defined: no subclinical inflammation, 1–2 locations, or ≥ 3 locations, with or without MCP-extensor peritendinitis. Positive predictive values (PPVs) ranged 5% (lowest category; NPV 95%) to 67% (highest category). Similar findings were obtained in the validation cohort; PPVs ranged 4% (lowest category; NPV 96%) to 63% (highest category).ConclusionTenosynovitis, particularly MCP-extensor peritendinitis, is among the first tissues affected by RA. Incorporating this feature and number of locations with subclinical inflammation improved prediction making with PPVs up to 63–67%.
ObjectivesThe human leukocyte antigen-shared epitope (HLA-SE) alleles and smoking are the most prominent genetic and environmental risk factors for rheumatoid arthritis (RA). However, at which pre-arthritis stage (asymptomatic/symptomatic) they exert their effect is unknown. We aimed to determine whether HLA-SE and smoking are involved in the onset of autoantibody positivity, symptoms (clinically suspect arthralgia (CSA)) and/or progression to clinical arthritis.MethodsWe performed meta-analyses on results from the literature on associations of HLA-SE and smoking with anti-citrullinated protein antibodies (ACPAs) in the asymptomatic population. Next, we studied associations of HLA-SE and smoking with autoantibody positivity at CSA onset and with progression to clinical inflammatory arthritis (IA) during follow-up. Associations in ACPA-positive patients with CSA were validated in meta-analyses with other arthralgia cohorts. Analyses were repeated for rheumatoid factor (RF), anti-carbamylated protein antibodies (anti-CarP) and anti-acetylated protein antibodies (AAPA).ResultsMeta-analyses showed that HLA-SE is not associated with ACPA positivity in the asymptomatic population (OR 1.06 (95% CI:0.69 to 1.64)), whereas smoking was associated (OR 1.37 (95% CI: 1.15 to 1.63)). At CSA onset, both HLA-SE and smoking associated with ACPA positivity (OR 2.08 (95% CI: 1.24 to 3.49), OR 2.41 (95% CI: 1.31 to 4.43)). During follow-up, HLA-SE associated with IA development (HR 1.86 (95% CI: 1.23 to 2.82)), in contrast to smoking. This was confirmed in meta-analyses in ACPA-positive arthralgia (HR 1.52 (95% CI: 1.08 to 2.15)). HLA-SE and smoking were not associated with RF, anti-CarP or AAPA-positivity at CSA onset. Longitudinally, AAPA associated with IA development independent from ACPA and RF (HR 1.79 (95% CI: 1.02 to 3.16)), anti-CarP did not.ConclusionsHLA-SE and smoking act at different stages: smoking confers risk for ACPA and symptom development, whereas HLA-SE mediates symptom and IA development. These data enhance the understanding of the timing of the key risk factors in the development of RA.
Though the stem cell properties of tooth-derived periodontal ligament and gingival cells have been widely documented, surprisingly little is known about both the osteogenic and osteoclastogenic differentiation capacities of the more clinically relevant jaw bone-derived cells. These cells could be considered being recruited during bone healing such as after tooth extraction, after placing an implant, or after surgical or traumatic injury. Here, we compared the osteoblast and osteoclastogenesis features of four consecutive bone outgrowths with periodontal ligament and gingiva cells. For osteogenesis assay, cells were cultured in osteogenic medium, whereas in osteoclastogenesis assays, cells were cultured in the presence of human peripheral blood mononuclear cells (PBMCs) as a source of osteoclast precursors. After osteogenic stimulus, all six cell types responded by an increased expression of osteoblast markers RUNX2 and DMP1. Periodontal ligament cells expressed significantly higher levels of RUNX2 compared to all bone outgrowths. Alkaline phosphatase enzyme levels in periodontal ligament cells reached earlier and higher peak expression. Mineral deposits were highest in periodontal ligament, gingiva and the first bone outgrowth. Osteoclastogenesis revealed a stepwise increase of secreted pro-osteoclastogenesis proteins M-CSF, IL-1β, and TNF-α in the last three consecutive bone cultures. OPG mRNA showed the opposite: high expression in periodontal and gingiva cells and the first outgrowth. Osteoclast numbers were similar between the six cultures, both on bone and on plastic. This first study reveals that jaw bone outgrowths contain bone remodelling features that are slightly different from tooth-associated cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.