Salinity is one of the most important abiotic stress affecting the world rice production. The cultivation of salinity-tolerant cultivars is the most costeffective and environmentally friendly approach for salinity control. In recent years, CRISPR/Cas9 systems have been widely used for target-site genome editing; however, their application for the improvement of elite rice cultivars has rarely been reported. Here, we report the improvement of the rice salinity tolerance by engineering a Cas9-OsRR22-gRNA expressing vector, targeting the OsRR22 gene in rice. Nine mutant plants were identified from 14 T 0 transgenic plants. Sequencing showed that these plants had six mutation types at the target site, all of which were successfully transmitted to the next generations. Mutant plants without transferred DNA (T-DNA) were obtained via segregation in the T1 generations. Two T2 homozygous mutant lines were further examined for their salinity tolerance and agronomic traits. The results showed that, at the seedling stage, the salinity tolerance of T2 homozygous mutant lines was significantly enhanced compared to wild-type plants. Furthermore, no significantly different agronomic traits were found between T2 homozygous mutant lines and wild-type plants. Our results indicate CRISPR/ Cas9 as a useful approach to enhance the salinity tolerance of rice.
Background Stigma exsertion rate (SER) is a key determinant of outcrossing in hybrid rice seed production. A quantitative trait locus (QTL) for stigma exsertion rate in rice, qSER-7 , has previously been detected on chromosome 7 by using a F 2 population derived from two indica cytoplasmic male sterility (CMS) maintainers, Huhan 1B and II-32B. Results The chromosomal location of qSER-7 was precisely delimited by fine-scale mapping. Near-isogenic lines (NILs) were established, one of which isolated the locus in the qSER-7 II-32B line, which contains an introgressed segment of II-32B in the Huhan 1B genetic background, and exhibits a significantly higher stigma exsertion rate than that of the recurrent parent. Using 3192 individuals from the BC 4 F 2 segregation population, the QTL qSER-7 was narrowed down to a 28.4-kb region between the markers RM3859 and Indel4373 on chromosome 7. According to the rice genome annotation database, three genes were predicted within the target region. Real-time PCR analysis showed significantly higher expression levels of LOC_Os07g15370 and LOC_Os07g15390 in II-32B than in Huhan 1B. LOC_Os07g15370(OsNRAMP5) was a previously reported gene for Mn and Cd transporter. The stigma exertion rates of OsNRAMP5 -overexpressing plants were significantly higher than that of wild type plants, in contrast, a T-DNA insertion mutant osnramp5 showed a lower stigma exertion rate. Conclusions In the present study, the QTL qSER-7 was isolated to a region between the markers RM3859 and Indel4373. Two candidate genes were selected based on the expression difference between the two parents, which can facilitate the further cloning of the gene underlying the quantitative trait associated with qSER-7 as well as the marker-assisted transfer of desirable genes for stigma exsertion rate improvement in rice. Electronic supplementary material The online version of this article (10.1186/s12284-019-0304-z) contains supplementary material, which is available to authorized users.
Purpose: To assess the effect of ellipticine (EPT), an alkaloid isolated from the Oleaceae family, on endometriosis, and to identify its possible mechanisms of action. Methods: Human endometriosis-like cell lines exposed to EPT were subjected to bromodeoxyuridine/5-bromo-2´-deoxyuridine and proliferating cell nuclear antigen staining. Flow cytometry and immunoblot analyses were used to assess the effect of EPT on cell apoptosis. Mitochondrial damage was determined by JC-1 staining and immunoblotting. Immunoblot assays were performed to determine the effects of EPT on the MAPK pathway. Results: Ellipticine inhibited the viability of human endometriosis cell lines and stimulated cell apoptosis (p < 0.01). It further induced mitochondrial damage in human endometriosis cell lines (p < 0.01). Mechanistically, EPT acted on MAPK pathway, and induced apoptosis and mitochondrial dysfunction (p < 0.01) in human endometriosis cells. Conclusion: Ellipticine is a potential treatment strategy for the management of endometriosis. However, further exploration of this potential should be explored via in vivo studies.
Background The two-line method based on the photoperiod and thermo-sensitive genic male sterile (PTGMS) lines is more cost-effective, simple, and efficient than the three-line system based on cytoplasmic male-sterility. Blast and drought are the most prevalent biotic and abiotic stress factors hampering rice production. Molecular techniques demonstrate higher efficacy in the pyramiding of disease resistance genes, providing green performance under the background of water-saving and drought-resistance rice. Results This study employed molecular marker-assisted selection, conventional hybridization, and high-intensity stress screening to integrate three broad-spectrum blast resistance genes Pi9, Pi5, and Pi54 into Huhan 1S. Subsequently, a novel water-saving and drought-resistance rice (WDR) PTGMS line Huhan 74S was developed. The drought resistance of the new PTGMS line Huhan 74S was comparable to that of Huhan 1S. Pathogenicity assays involving the inoculation of 14 blast prevalent isolates in the glasshouse showed that the blast resistance frequency of Huhan 74S was 85.7%. Further evaluation under natural blast epidemic field conditions showed that Huhan 74S and its hybrids were resistant to leaf and neck blast. The critical temperature point of fertility-sterility alteration of Huhan 74S was 23 °C daily mean temperature. The complete male sterility under natural growth conditions in 2017 at Shanghai lasted for 67 days. Also, both the agronomic and grain quality traits met the requirement for two-line hybrid rice production. Conclusion These results indicate that the newly bred PTGMS line Huhan 74S can be used to breed high-yielding, good-quality, disease-resistant two-line hybrid water-saving and drought-resistance rice (WDR), hence promoting sustainable rice production in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.