This study proposes the use of features combination and a non-linear kernel to improve the classification rate of texture recognition. The feature vector concatenates three different sets of feature: the first set is extracted using grey-level cooccurrence matrix, the second set is collected from three different radii of local binary patterns, and the third set is generated using Gabor wavelet features. Gabor features are the mean, the standard deviation, and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance derived from the features. To verify the effectiveness of the proposed method, numerous techniques are tested using the three data sets, which consist of various orientations, configurations and lighting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.