Contamination of zirconia restorations before cementation can impair the resin–zirconia bonding durability. The objective of this study was to evaluate the effect of human saliva or blood decontamination with 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP)-containing cleaner on the resin–zirconia shear bond strength (SBS). Methods: A total of 220 zirconia specimens were prepared and air-abraded and randomly distributed into 11 groups (n = 20 per group). Except for the control group (no contamination), zirconia specimens were contaminated with either human saliva (five groups) or blood (five groups), and then subjected to one of five cleaning methods: water rinsing, 38% phosphoric acid etchant (Pulpdent Corp., Watertown, MA, USA), 70% isopropanol alcohol (Avalon Pharma, Riyadh, Saudi Arabia), Ivoclean (Ivoclar Vivadent, Schaan, Lichtenstein) and Katana Cleaner (Kuraray Noritake, Tokyo, Japan). The resin–zirconia SBS was tested at 24 h and after thermocycling (10 k cycles). Three-way ANOVA followed by Tukey’s multiple comparisons test were utilized to analyze the SBS data. Failure modes were evaluated using a scanning electron microscope. Results: Both blood and saliva significantly affected resin–zirconia SBS as contaminants. After thermocycling, there was no statistically significant difference between SBS obtained after decontamination with the Katana Cleaner (blood, 6.026 ± 2.805 MPa; saliva, 5.206 ± 2.212 MPa) or Ivoclean (blood, 7.08 ± 3.309 MPa; saliva, 6.297 ± 3.083 MPa), and the control group (no contamination, 7.479 ± 3.64 MPa). Adhesive and mixed failures were the most frequent among the tested groups. Conclusion: Both 10-MDP-containing cleaner (Katana Cleaner) and zirconium oxide-containing cleaner (Ivoclean) could eliminate the negative effect of saliva and blood contamination on resin–zirconia SBS.
The aim of this in vitro study is to compare the color stability and surface roughness of conventional and self-blending resin composites before and after staining and aging. Three conventional composites (Filtek Z350, IPS Empress Direct, and Estalite Palfique LX5) and one self-blending (Omnichroma) resin composite were used in this study. Sixty discs were prepared and polymerized in a metal mold (n = 15 per group). Samples were then finished and polished by Layan discs. Color testing and roughness testing were measured as a baseline (T0) by a spectrophotometer and profilometry. Samples were then stained with tea for 24 h, water aged for 30 days, and then a second reading (T1) was performed. Finishing and polishing were performed again, and a third reading (T2) was collected. All groups showed significant decrease in all color parameters (L*, a*, and b*); however, after polishing, all groups showed color enhancements matching pre-experiment baseline colors in all color parameters (L*, a*, and b*), except for Estelite Palfique LX5, which showed a significant difference in L relative to the baseline. Furthermore, Estalite Palfique LX5 showed increased roughness after staining compared to the baseline, unlike other groups. No significant differences in color stability were found between self-blending composites and other composite materials. Accelerated aging and staining had minimal effects on the surface roughness of self-blending composite.
Objective: The objective of this review was to evaluate the effect of non-thermal atmospheric plasma (NTAP) on adhesives resin–dentin micro-tensile bond strength (μTBS) in previously published studies. Methods: Electronic search was conducted using the Medline, Cochrane library, and Scopus databases. The included studies were laboratory studies that investigated the effect of NTAP on adhesives μTBS to coronal dentin. Studies that evaluated the effect of NTAP on bond strength to indirect substrates, enamel or root dentin, were excluded. The methodological quality of included studies was assessed. Results: Thirteen studies were included in this systematic review. All the included studies were considered to have a medium risk of bias. NTAP significantly improved μTBS at 24 h or after short-term aging in five studies (38.5%) and both immediate and after long-term aging in 5 studies (38.5%). In two studies (15.4%), NTAP resulted in a short-term material-dependent effect that was not stable after long-term aging. Interestingly, in one study (7.7%), NTAP had a positive effect only in the etch-and-rinse (ER) mode after long-term aging. Conclusion: Within the limitations of this systematic review, NTAP application could enhance resin–dentin μTBS of ER adhesives or universal adhesives (UAs) applied in the ER mode. In the ER mode, the rewetting step after NTAP seems to be unnecessary. Because of the limited information currently available in the literature, further studies are required to evaluate the effect of the NTAP application on self-etch (SE) adhesives or UAs applied in the SE mode.
Objective: To evaluate the effects of surface treatment and repair material on the repair shear bond strength (SBS) of the bioactive restorative material. Methods: A total of 240 Activa BioActive Restorative (Activa) discs were prepared, aged, and polished, and divided randomly into eight groups ( n = 30). Groups 1–4 discs were repaired with bulk-fill flowable resin-based composite (Bulk-RBC), and Groups 5–8 discs with Activa. Surface treatment used for each repair material type were air abrasion with silica-coated 30-m Al2O3 particles (air abrasion) (Groups 2 & 6), Air abrasion with universal primer (Groups 3 & 7), and Air abrasion with universal adhesive (Groups 4 & 8). Groups 1 and 5 were controls without surface treatment. SBS test was performed, and the failure mode and surface topography were assessed. Results: Surface treatment with air abrasion significantly improved the SBS for repair using both Activa and Bulk-RBC. Repair SBS using Activa was significantly higher compared with Bulk-RBC. Cohesive failure in substrate and mixed failures were most common in the surface-treated groups (2–4, 6–8). Air abrasion produced prominent surface topography changes compared with polishing. Conclusion: Air abrasion enhances the repair SBS of aged bioactive restorative material. The use of the same material (Activa) for repair affords a higher bond strength compared with the use bulk-RBC.
Cention N (CN; Ivoclar Vivadent, Schaan, Liechtenstein), advertised as an alkasite, is a bioactive bulk-fill resin-based composite (BF-RBC) with alkaline fillers. This study evaluated the resin-dentin micro-tensile bond strength (μTBS) and cytotoxicity of CN. Methods: Flat dentin surfaces were obtained, bonded with a universal adhesive, and randomly distributed into two groups. CN (group I) and a flowable BF-RBC, namely, Tetric N-Flow Bulk Fill, Ivoclar Vivadent, Schaan, Liechtenstein (group II), were used. After thermocycling, bonded samples were sectioned into micro-beams for μTBS evaluation. Resin-based composite (RBC) discs with a thickness of 2 and 4 mm were tested on human gingival fibroblast cells (HGFCs). Cytotoxicity was assessed by cell viability and growth using AlamarBlue® (Biosource, Camarillo, CA, USA) over a seven-day period. Independent t-test was utilized to statistically analyze μTBS data, while one- and two-way analysis of variance (ANOVA) and Tukey’s post-hoc tests were utilized to analyze the cell viability data. Results: There was no statistically significant difference (p > 0.05) in the μTBS between the flowable BF-RBC and CN. For both materials, the HGFCs were viable, with constant growing over the seven-day period. Conclusion: CN provided a resin-dentin μTBS that was comparable to that provided by the flowable BF-RBC. Both materials showed acceptable cytotoxicity over the seven-day period at a thickness of both 2 and 4 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.