Cervical cancer will cause 460 000 deaths per year by 2040, approximately 90% are Sub-Saharan African women. A constantly increasing incidence in Africa making cervical cancer a priority by the World Health Organization (WHO) in terms of screening, diagnosis, and treatment. Conventionally, cancer diagnosis relies primarily on histopathological assessment, a deeply error-prone procedure requiring intelligent computer-aided systems as low-cost patient safety mechanisms but lack of labeled data in digital pathology limits their applicability. In this study, few cervical tissue digital slides from TCGA data portal were pre-processed to overcome whole-slide images obstacles and included in our proposed VGG16-CNN classification approach. Our results achieved an accuracy of 98,26% and an F1-score of 97,9%, which confirm the potential of transfer learning on this weakly-supervised task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.