Occupational exposure and sniffing of volatile organic solvents continue to be a worldwide health problem, raising the risk for teratogenic sequelae of maternal inhalant abuse. Real life exposures usually involve simultaneous exposures to multiple solvents, and almost all the abused solvents contain a mixture of two or more different volatile compounds. However, several studies examined the teratogenicity due to industrial exposure to a single volatile solvent but investigating the teratogenic potential of complex chemical mixture such as thinner remains unexplored. This study was undertaken to evaluate developmental neurotoxicity of paint thinner using a mouse model. Mated female mice (N = 21) were, therefore, exposed to repeated and brief inhalation episodes of 0, 300 or 600 ppm of thinner during the entire period of pregnancy. Females weigh was recorded and their standard fertility and reproductive parameters were assessed. After birth postnatal day 1 (PND1), offspring (N = 88) length and body weight were measured in a daily basis. At PND5, the pups were assessed for their postnatal growth, physical maturation, reflex development, neuromotor abilities, sensory function, activity level, anxiety, depression, learning and memory functions. At adulthood, structural changes of the hippocampus were examined by estimating the total volume of the dentate gyrus. Except one case of thinner induced abortion at the higher dose, our results showed that the prenatal exposure to the solvent did not cause any maternal toxicity or decrease in the viability of the offspring. Therefore, a lower birth weight, decrease in the litter size and delayed reflexes ontogeny were registered in prenatally exposed offspring to both 300 ppm and 600 ppm of thinner. In addition, prenatally exposure to thinner resulted in increased anxiolytic-and depression-like behaviors. In contrast, impaired learning and memory functions and decreased hippocampal dentate gyrus volume were revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.