The use of biotechnology in food production has generated considerable debate involving the benefits and risks associated with its use. Consumer acceptance of genetically modified foods is a critical factor that will affect the future of this technology. Using data from a national survey, this study examines how public acceptance of food biotechnology is related to consumers’ socioeconomic and value attributes as well as the benefits associated with the use of this technology. Empirical results suggest that consumer acceptance of food biotechnology increases considerably when the use of this technology brings tangible benefits for the public. Consumers with different socioeconomic and demographic attributes have diverging views of food biotechnology only when its use brings specific benefits to them. When the use of genetic technology confers no additional benefit, public attitudes towards genetically modified foods are driven primarily by their scientific knowledge, views of scientists and corporations associated with biotechnology as well as public trust and confidence in government.
Using data from a national survey, this study analyses US consumers’ acceptance of genetically modified foods that provide additional nutritional benefits. Using an ordered probit model, this study examines the relation between the willingness to consume genetically modified foods and consumers’ economic, demographic and value attributes. Empirical results suggest that despite having some reservations, especially about the use of biotechnology in animals, American consumers are not decidedly opposed to food biotechnology. Consumers’ economic and demographic variables are only weakly related to their acceptance of food biotechnology, especially when technology involves plant‐to‐plant DNA transfer. However, public trust and confidence in various private and public institutions are significantly related to their acceptance of food biotechnology. Overall, consumer acceptance of bioengineered foods is driven primarily by public perceptions of risks, benefits and safety of these food products.
This study provides the first evidence of a direct link between the adoption of a genetically modified (GM) crop and improvements in human health. Estimation of the impact of Bacillus thuringiensis (Bt) cotton adoption on pesticide use from data from a survey of cotton farmers in northern China, 1999-2001, showed that Bt cotton adoption reduced pesticide use. Assessment of a health-production function showed that predicted pesticide use had a positive impact on poisoning incidence. Taken together, these results indicate that the adoption of Bt cotton can substantially reduce the risk and the incidence of poisonings.
The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2+/0 and Co(pzb)2+/0 couples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.