Objective Adipose-derived mesenchymal stem cells (ADMSCs) have great potential for regenerative medicine. These have been combined with biomaterials such as Bovine teeth that are preferred as a periodontal regeneration material. The main purpose of this study is to evaluate and analyze a biocompatibility test and osteogenic differentiation of bovine teeth scaffold seeded with ADMSCs in vitro. Materials and Methods A true experimental study with post-test only group design was conducted. Random sampling and Lameshow's formula were used to determine the sample. The scaffold, obtained from bovine teeth as the bone graft material, was analyzed using 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and its attachment was evaluated by scanning electron microcopy (SEM) and micro-computed tomography with ADMSCs. ADMDSCs attachment present in the bovine teeth scaffold was assessed using SEM at 1-hour, 12-hour, and 24-hour intervals. Statistical Analysis Analysis of variance was used to analyze the MTT assay results (p < 0.05) based on normality and homogeneity test (p > 0.05). Results The highest viability of cells (97.08%) was found at a concentration of 10% by means of an MTT test (p < 0.05). The results of three-dimensional bovine teeth scaffold showed the average particle size to be 500 µm. ADMSCs cell attachment to the scaffold bovine teeth showed a significant increase in the number of cells attached after 24 hours compared with those at 1 and 12 hours. Alizarin red staining showed an increase in ADMSC osteogenic differentiation after it was combined with bovine teeth scaffold. Conclusion The scaffold from bovine teeth is biocompatible and accelerates osteogenic differentiation of ADMSC.
In the field of neurosurgery, often the dura mater cannot be sutured, and consequently, it requires a duraplasty procedure using a dural fascial graft. Since 1890, various materials have been researched as dura mater substitutes. Amniotic membrane, for example, is suitable as a dural graft material and has been used in neurosurgery since 2012. However, there has been little research on human patient's dural healing after the use of amniotic membrane in their duraplasty procedure. To address this gap, a clinical experimental study was undertaken to evaluate the human dural healing of 16 patients who had undergone duraplasty in decompressive craniectomy surgery at Dr. Soetomo General Hospital, Surabaya. The amniotic membrane allograft, was sutured to cover the dural defect for eight randomly chosen patients (Group I). The fascial autograft from the temporal muscle had been applied for eight other patients (Group II). Between 10 and 20 weeks after surgery, the patients underwent cranioplasty and dural healing evaluation by cerebrospinal fluid (CSF) leakage testing through the edge of the dural defect. The fibrocyte infiltration around the edge of the dural defect was examined histologically. Statistical analysis, using an independent t-test, was performed with a confidence interval of 95%. The results of the clinical and histological analysis suggest that an amniotic membrane graft was able to provide watertight dural closure and adequate fibrocyte infiltration comparable with that provided by temporalis muscle fascia. This study shows that using an amniotic membrane in neurosurgery has a potential advantage over an alternative dural healing.
Cartilage defect has become serious problem for orthopaedic surgeon and patients because of its difficult healing that might occur when articular cartilage damage never reach subchondral layer. In this study, we used combination of freeze dried bovine cartilage (FDBC) scaffold, bone marrow mesenchymal stem cells (BM-MSCs), and platelet rich plasma (PRP) composite (SMPC) implanted in full thickness cartilage defect. This study is to explain its regeneration mechanism. This is true experimental research with post-test only control group design using New Zealand White Rabbit. 50 rabbits is divided into three groups of SMPC, BM-MSCs and FDBC. 37 rabbits evaluated after twelve weeks. Histopathologic examination showed the number of chondrocytes, collagen thickness and cartilage width are highest on SMPC group. Immunohistochemical examination showed SMPC group has the highest number of chondroprogenitor cells express FGF-2R, Sox-9, and MAPK. Brown Forsythe test resulted in significant increase the number of chondrocytes (p=0,010), collagen thickness (p=0,000), and cartilage surface width (p=0,015), and increase FGF-2R (p=0,000), MAPK (p=0,000), and Sox-9 (p=0,000) on SMPC group. Using path analysis, there is strong influence from FGF-2R, MAPK, and Sox-9 to the increase of chondrocytes, collagen thickness, and cartilage surface width. Hence, SMPC implantation mechanism of full thickness cartilage defect regeneration can be explained.
Investigating the function of combining induced rat monocytes-derived bone marrow-haemopoietic stem cell (rat BM-HSCs) with LPS and rat bone marrow-mesenchymal stem cell (rat BM-MSCs) wasto analyze the acceleration of homing process mechanism in injured pancreas. Mononucleated stem cells were isolated from aspirated whole rat BM using ficoll and cultured in α-MEM complete growth medium in 10 cm petridish. After two days, adherent cells after washing twice in petridish were added α-MEM growth medium and then mesenchymal cells were characterized using CD105 marker in third passage and labeled PKH26. Then haemopoietic stem cells (HSCs) were isolated with magnetic beads CD34+ and differentiated in vitro, and then induced monocytes with LPS. Animal experiment used 28 male Wistar rats, and divided them into 4 groups. After transplantation combined, both cells between monocyte derived HSc (mHSCs) and rat BM-MSC were analyzed expression of pair box gen 4 (Pax4), pancreatic and duodenal homeobox (Pdx1), C-peptide using immunohistochemistry, then secretion of insulin and C-peptide analyzed using in-direct ELISA. Results showed that the expressions of Pax4, Pdx1, C-peptide found in the surface membrane cell F. A. Rantam et al. 334 of pancreatic cell, and secreted C-peptide and insulin were shown significant (P < 0.05) in transplanted group 2, 3 and 4, but in group 3 were transplanted with combined cells more dominant than non-combined cells. Conclusions suggested that combining of induced monocytes-derived HSCs and rat BM-MSCs has accelerated homing MSCs into injured pancreatic tissue.
Amniotic membrane of human placenta is a source of abundant mesenchymal stem cell (hAMSC) which makes it a potential source of allogeneic multipotent cell for bone healing. However, much has to be explored about its isolation procedure and the osteogenic differentiation potential. The aims of this study are to establish the procurement procedure of human amniotic membrane, the isolation and culture of hAMSC, the MSC phenotypic characterization, and the in vitro osteogenic differentiation of hAMSC. Results of the study are as follows. The quality of human amniotic membrane would be best if procured from Caesarean operation under highly aseptic condition to avoid fungal and bacterial contamination on the culture. Isolation procedure using modified Soncini protocol yielded large amount of MSC with high proliferative capacity in culture medium. Characterization of hAMSC showed that the majority of the target cells exhibited specific MSC markers (CD105 and CD90) with a small number of these cells expressing CD45, the marker of hematopoeitic cells. The in vitro osteogenic differentiation of hAMSC followed by Alizarin Red staining showed that osteoblastic differentiation was detected in a significantly high number of cells. This study concludes that hAMSCs isolated from human amniotic membrane have the capacity for in vitro osteogenesis which makes them be one of the potential allogeneic stem cells for application in maxillofacial bone reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.