A mixed-integer linear programming (MILP) model for scheduling chemical batch processes is presented. Since computational times are prohibitive for most problems of realistic size, a two-stage solution procedure is suggested. In the ® rst stage, an initial solution is derived by use of a LP-based heuristic. The proposed heuristic de® nes a time grid that includes only a limited number of feasible periods in which a processing task is allowed to start. Thus, the size of the original multi-period MILP model is reduced in a controlled manner and optimal solutions to the relaxed model are obtained within reasonable computational time. The second stage consists of an improvement step that aims to compress the initial schedule by left-shifting operations over the time-axis. In order to evaluate the applicability of the heuristics a number of numerical experiments were performed. It is shown that near-optimal solutions are obtained for largesize problems with only modest computational e ort. IntroductionIn the chemical industries, there is an increasing trend to operate plants in batch mode, especially for the low-volume manufacture of high-value-adde d speciality chemicals. Moreover, batch processing is suitable for producing a wide range of products whose individual demand is not large enough to justify the construction of a dedicated plant. In these cases, it is economical to use multi-purpose equipment to carry out the diverse processing tasks. Batch processing o ers the advantage of an increased¯exibility with respect to product variety, production volume, and the range of recipes that can be processed by the particular equipment. In contrast, plants that produce only a limited number of products each in a relatively high volume, allow an almost continuous¯ow of material and the use of dedicated equipment. However, the general multi-purpose batch plants considered in this paper employ individual production runs involving¯exible equipment/task assignments and variable batch sizes. Accordingly, production scheduling is signi® cantly complicated by the large number of batches involved, the dissimilarity of the production paths and the short-term variations in product demand.Chemical batch plants are characterized by two key elements: the physical con-® guration and the network of processing tasks. The physical con® guration consists
I M a t e r i a l f l u R s t e u e r u n g I 593 lungen im Hinblick auf die mathematische Natur der Transportprozesse unzutreffend, so ist auch der beschriebene Zusammenhang nicht zu erwarten. Andererseits ist es moglich, daR der Zusammenhang existiert, jedoch unterhalb der MeBgenauigkeit der verwendeten Mefirnethoden liegt. Um letzteres zu uberpriifen, werden die Energie-und Entropiebilanzen aufgestellt, und es wird berechnet, wie groR der Effekt drr Dilatation auf den Stofftransport maximal sein kann, ohne den zweiten Hauptsatz der Thermodynamik zu verletzen. Das Ergebnis wird rnit der Genauigkeit verglichen, mit der in dem eingesetzten Versuchsaufbau eine meRbare Anderung der Konzentrationsprofile festgestellt werden kann.Als Ergebnis wird festgestellt, daR der maximal zu erwartende Effekt in der GroBenordnung der MeRgenauigkeit liegt. Die Abschatzung des maximal moglichen Effekts ist allerdings rnit Unsicherheiten behaftet, so daR dessen GroRenordnung auch deutlich geringer ausfallen kann. Die holographische Interferometrie gehort zu den Verfahren mit der hochsten Genauigkeit, um die beschriebenen Konzentrationsanderungen messen zu konnen. Aus den experimen tellen Ergebnissen kann daher geschlossen werden, da13 ein moglicher EinfluB der Dilatation auf den Stofftransportfalls er existiertkeinen meBbaren EinfluR auf die praktische Auslegung von Stofftransportprozessen hat. Dies ist fur alle in der Flussigextraktion gebrauchlichen Stoffsysteme gultig. Die Autciren danken der DFG, die das Vorhaben im Rahmen des Schwerpunktprogrammes ,,Transportmechanismen iiber fluide Pliasengrenzen" groJziigig gefordert hat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.