Purpose: Targeted therapeutics have significantly changed the outcome for patients diagnosed with cancer. Still, effective therapeutic intervention does not exist for many cancers and much remains to be done. The objective of this study was to identify novel genes that potentially regulate tumor growth, to target these gene products with monoclonal antibodies, and to examine the therapeutic potential of these antibodies. Experimental Design: Using cDNA microarray analysis, we identified genes overexpressed in several solid malignancies. We generated a mouse monoclonal antibody, 19.2.1, and its humanized counterpart, PDL192, to one such target, TweakR (TWEAK receptor, Fn14, TNFRSF12A, CD266), and characterized the antitumor activities in vitro and in mouse xenograft models. Results: Both 19.2.1 (mouse IgG2a) and PDL192 (human IgG1), like TWEAK, the natural ligand of TweakR, inhibited the growth of several TweakR-expressing cancer cell lines in anchorage-dependent and anchorage-independent assays in vitro. Both antibodies showed significant antitumor activity in multiple mouse xenograft models. PDL192 and 19.2.1 also induced antibody-dependent cellular cytotoxicity (ADCC) of cancer cell lines in vitro. A chimeric version of 19.2.1 containing the mouse IgG1 Fc region (19.2.1×G1) exhibited significantly less ADCC than 19.2.1. However, 19.2.1×G1 showed differential activity in vivo, with activity equivalent to 19.2.1 in one model, but significantly less efficacy than 19.2.1 in a second model. These results indicate that PDL192 and 19.2.1 mediate their antitumor effects by signaling through TweakR, resulting in reduced tumor cell proliferation, and by ADCC. Clin Cancer Res; 16(2); 497–508
Current treatments for advanced stage, hormone-resistant prostate cancer are largely ineffective, leading to high patient mortality and morbidity. To fulfill this unmet medical need, we used global gene expression profiling to identify new potential antibody-drug conjugate (ADC) targets that showed maximal prostate cancer-specific expression. TMEFF2, a gene encoding a plasma membrane protein with two follistatin-like domains and one epidermal growth factor–like domain, had limited normal tissue distribution and was highly overexpressed in prostate cancer. Immunohistochemistry analysis using a specific monoclonal antibody (mAb) to human TMEFF2 showed significant protein expression in 74% of primary prostate cancers and 42% of metastatic lesions from lymph nodes and bone that represented both hormone-naïve and hormone-resistant disease. To evaluate anti-TMEFF2 mAbs as potential ADCs, one mAb was conjugated to the cytotoxic agent auristatin E via a cathepsin B–sensitive valine-citrulline linker. This ADC, Pr1-vcMMAE, was used to treat male severe combined immunodeficient mice bearing xenografted LNCaP and CWR22 prostate cancers expressing TMEFF2. Doses of 3 to 10 mg/kg of this specific ADC resulted in significant and sustained tumor growth inhibition, whereas an isotype control ADC had no significant effect. Similar efficacy and specificity was shown with huPr1-vcMMAE, a humanized anti-TMEFF2 ADC. No overt in vivo toxicity was observed with either murine or human ADC, despite significant cross-reactivity of anti-TMEFF2 mAb with the murine TMEFF2 protein, implying minimal toxicity to other body tissues. These data support the further evaluation and clinical testing of huPr1-vcMMAE as a novel therapeutic for the treatment of metastatic and hormone-resistant prostate cancer.
and are implicated in many neurological disorders. Available x-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation [1][2][3][4][5][6][7][8] . Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å x-ray structure of the human glycine receptor a3 homopentamer in complex with a high affinity, high specificity antagonist strychnine. Our structure allows us to explore in great detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism of inactivating Cys-loop receptors by antagonist binding.This work has been published in Nature Sep 28.
<div>Abstract<p><b>Purpose:</b> Targeted therapeutics have significantly changed the outcome for patients diagnosed with cancer. Still, effective therapeutic intervention does not exist for many cancers and much remains to be done. The objective of this study was to identify novel genes that potentially regulate tumor growth, to target these gene products with monoclonal antibodies, and to examine the therapeutic potential of these antibodies.</p><p><b>Experimental Design:</b> Using cDNA microarray analysis, we identified genes overexpressed in several solid malignancies. We generated a mouse monoclonal antibody, 19.2.1, and its humanized counterpart, PDL192, to one such target, TweakR (TWEAK receptor, Fn14, TNFRSF12A, CD266), and characterized the antitumor activities <i>in vitro</i> and in mouse xenograft models.</p><p><b>Results:</b> Both 19.2.1 (mouse IgG2a) and PDL192 (human IgG1), like TWEAK, the natural ligand of TweakR, inhibited the growth of several TweakR-expressing cancer cell lines in anchorage-dependent and anchorage-independent assays <i>in vitro</i>. Both antibodies showed significant antitumor activity in multiple mouse xenograft models. PDL192 and 19.2.1 also induced antibody-dependent cellular cytotoxicity (ADCC) of cancer cell lines <i>in vitro</i>. A chimeric version of 19.2.1 containing the mouse IgG1 Fc region (19.2.1×G1) exhibited significantly less ADCC than 19.2.1. However, 19.2.1×G1 showed differential activity <i>in vivo</i>, with activity equivalent to 19.2.1 in one model, but significantly less efficacy than 19.2.1 in a second model. These results indicate that PDL192 and 19.2.1 mediate their antitumor effects by signaling through TweakR, resulting in reduced tumor cell proliferation, and by ADCC. Clin Cancer Res; 16(2); 497–508</p></div>
<div>Abstract<p><b>Purpose:</b> Targeted therapeutics have significantly changed the outcome for patients diagnosed with cancer. Still, effective therapeutic intervention does not exist for many cancers and much remains to be done. The objective of this study was to identify novel genes that potentially regulate tumor growth, to target these gene products with monoclonal antibodies, and to examine the therapeutic potential of these antibodies.</p><p><b>Experimental Design:</b> Using cDNA microarray analysis, we identified genes overexpressed in several solid malignancies. We generated a mouse monoclonal antibody, 19.2.1, and its humanized counterpart, PDL192, to one such target, TweakR (TWEAK receptor, Fn14, TNFRSF12A, CD266), and characterized the antitumor activities <i>in vitro</i> and in mouse xenograft models.</p><p><b>Results:</b> Both 19.2.1 (mouse IgG2a) and PDL192 (human IgG1), like TWEAK, the natural ligand of TweakR, inhibited the growth of several TweakR-expressing cancer cell lines in anchorage-dependent and anchorage-independent assays <i>in vitro</i>. Both antibodies showed significant antitumor activity in multiple mouse xenograft models. PDL192 and 19.2.1 also induced antibody-dependent cellular cytotoxicity (ADCC) of cancer cell lines <i>in vitro</i>. A chimeric version of 19.2.1 containing the mouse IgG1 Fc region (19.2.1×G1) exhibited significantly less ADCC than 19.2.1. However, 19.2.1×G1 showed differential activity <i>in vivo</i>, with activity equivalent to 19.2.1 in one model, but significantly less efficacy than 19.2.1 in a second model. These results indicate that PDL192 and 19.2.1 mediate their antitumor effects by signaling through TweakR, resulting in reduced tumor cell proliferation, and by ADCC. Clin Cancer Res; 16(2); 497–508</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.