Quantum mechanical calculations had been previously applied to predict phase stability in many ternary and multinary nitride systems. While the predictions were very accurate for the Ti-Al-N system, some discrepancies between theory and experiment were obtained in the case of other systems. Namely, in the case of Ta-Al-N, the calculations tend to overestimate the minimum Al content necessary to obtain a metastable solid solution with a cubic structure. In this work, we present a comprehensive study of the impact of vacancies on the phase fields in quasi-binary TaN-AlN and NbN-AlN systems. Our calculations clearly show that presence of point defects strongly enlarges the cubic phase field in the TaN-AlN system, while the effect is less pronounced in the NbN-AlN case. The present phase stability predictions agree better with experimental observations of physical vapour deposited thin films reported in the literature than that based on perfect, non-defected structures. This study shows that a representative structural model is crucial for a meaningful comparison with experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.