This paper focuses on the preparation of a new extended set of calibrations of cooling rate (fictive temperature) in fused silica determined by inelastic light scattering and its subsequent use to characterize the local cooling rate distribution in ultra-short pulsed (USP) laser modification. In order to determine the thermal history (e.g. cooling rate and fictive temperature) of fused silica, high-resolution inelastic light-scattering experiments (Raman and Brillouin spectroscopy) were investigated. Calibrations were performed and compared to the existing literature to quantify structural changes due to a change of fictive temperature. Compared to existing calibrations, this paper provides an extension to lower and higher cooling rates. Using this new set of calibrations, we characterized a USP laser modification in fused silica and calculated the local fictive temperature distribution. An equation relating the fictive temperature (Tf ) to cooling rates is given. A maximum cooling rate of 3000 K min−1 in the glass transition region around 1200 °C was deduced from the Raman analysis. The Brillouin observations are sensitive to both the thermal history and the residual stress. By comparing the Raman and Brillouin observations, we extracted the local residual stress distribution with high spatial resolution. For the first time, combined Raman and Brillouin inelastic light scattering experiments show the local distribution of cooling rates and residual stresses (detailed behavior of the glass structure) in the interior and the surrounding of an USP laser modified zone.
Aerosol deposition (AD) is a dynamic loading process that can be envisioned as a shock wave loading, necessitating the consideration of the elastic/plastic response of solid materials. Due to the dynamic nature of this process, however, experimental determination of the local pressures during the deposition process is difficult. This work addresses this by investigating the compression and subsequent structure modification of a silicate glass after room‐temperature AD on a silicate glass substrate with Raman spectroscopy. Clear structural changes in the short‐ and middle‐range order of the silicate glass were observed, both as intertetrahedral angle distribution and as ring statistic. Therefore, the AD induced permanent densification of the glass, equivalent, in a hydrostatic approximation, to a minimal pressure of 10.5 ± 1.5 GPa during the film deposition process. Furthermore, the analysis of the Nd3+ photoluminescence of the 4F3/2 − 4I9/2 transition provided complementary information on the glass network modifications occurring during film formation. More than a pure hydrostatic densification, the AD seems to present a very intense shear deformation. This work opens up the perspective of evaluating the mechanical response of film‐substrate and of the particles themselves, and provides critical information on the mechanisms responsible for the AD film formation.
The process of laser filament cutting produces a practical nongap cut which ensures high precision in lateral dimensions at the micrometer scale. Commercially available OptiWhite soda lime silicate glass is filamented using a 1064 nm picosecond pulsed Nd:YAG laser with varying burst energies and focus positions. The filaments are characterized perpendicular to the incident laser beam using scanning electron microscopy (SEM). Maximum roughness Rz evaluated with laser scanning microscopy is measured on the cut sides. The characteristic mechanical strength σ of glass cleavage is decreased by a factor of 6 with the presence of the filaments. This σ obtained in the four‐point‐bending setup decreases with the increase in energy deposited in the material by the laser. It is found that the cleaving cracks are guided by the filament only if the network of microcracks is sufficiently developed. A threshold of the cleaving guidance is linked to a critical surface modification width of 2.5 μm which corresponds to half the distance between filaments. The influences of the laser parameters, sample thickness, and sample position in respect of the focal plane on the cut quality are studied. Guidelines are given to define a suitable parameter set.
Evolution of spectroscopic properties of a soda–lime silicate glass with different thermal history and under applied uniaxial stress was investigated using Raman and Brillouin spectroscopies as well as Nd3+ photoluminescence techniques. Samples of soda–lime silicate with a cooling rate from 6 × 10−4 to 650 K/min were prepared either by controlled cooling from the melt using a differential scanning calorimeter or by a conventional annealing procedure. Uniaxial stress effects in a range from 0 to −1.3 GPa were investigated in situ by compression of the glass cylinders. The spectroscopic observations of rearrangements in the network structure were related to the set cooling rates or the applied uniaxial stress to calculate an interrelated set of calibrations. Comparing the results from Raman and Brillouin spectroscopy with Nd3+ photoluminescence analysis, we find a linear dependence that can be used to identify uniaxial stress and cooling rate in any given combination concurrently. The interrelated calibrations and linear dependence models are established and evaluated, and equations relating the change of glass network due to effects of cooling rate or uniaxial stress are given.
A new series of soda–lime glass naturally doped with Nd and doped with 0.2 wt% of Eu2O3 was densified in a multi-anvil press up to 21 GPa. The densities of the millimetric samples were precisely measured using a floatation method in a heavy liquid made with sodium polytungstate. The obtained densification curve is significantly different from the calibration previously reported, reaching a maximum densification saturation of 3.55 ± 0.14%. This difference could be due to better hydrostatic conditions realized in this new study. The densified samples were characterized using Raman and Brillouin spectroscopy, as well as the emission of both Eu3+ and Nd3+. The evolution of the spectra was evaluated using integration methods to reduce error bars. The relative precision of the calibration curves is discussed. The evolution of Nd3+ transition was found to be the most sensitive calibration. Linear dependence with the density was found for all observables, with exception for Brillouin spectroscopy showing a divergent behavior. The Brillouin shift shows an unreported minimum for a densification ~0.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.