Several behavioral assays are currently used for high-throughput neurophenotyping and screening of genetic mutations and psychotropic drugs in zebrafish (Danio rerio). In this protocol, we describe a battery of two assays to characterize anxiety-related behavioral and endocrine phenotypes in adult zebrafish. Here, we detail how to use the 'novel tank' test to assess behavioral indices of anxiety (including reduced exploration, increased freezing behavior and erratic movement), which are quantifiable using manual registration and computer-aided video-tracking analyses. In addition, we describe how to analyze whole-body zebrafish cortisol concentrations that correspond to their behavior in the novel tank test. This protocol is an easy, inexpensive and effective alternative to other methods of measuring stress responses in zebrafish, thus enabling the rapid acquisition and analysis of large amounts of data. As will be shown here, fish anxiety-like behavior can be either attenuated or exaggerated depending on stress or drug exposure, with cortisol levels generally expected to parallel anxiety behaviors. This protocol can be completed over the course of 2 d, with a variable testing duration depending on the number of fish used.
MicroRNAs are short non-coding RNAs that modulate gene expression by translational repression. Because of their high stability in intracellular as well as extracellular environments, miRNAs have recently emerged as important biomarkers in several human diseases. However, they have not been tested in the cerebrospinal fluid (CSF) of HIV-1 positive individuals. Here, we present results of a study aimed at determining the feasibility of detecting miRNAs in the CSF of HIV-infected individuals with and without encephalitis (HIVE). We also evaluated similarities and differences between CSF and brain tissue miRNAs in the same clinical setting. We utilized a high throughput approach of miRNA detection arrays and identified differentially expressed miRNAs in the frontal cortex of three cases each of HIV+, HIVE, and HIV− controls, and CSF of ten HIV-positive and ten HIV-negative individuals. For the CSF samples, the group of HIV+ individuals contained nine cases of HIV-Associated Neurological Disorders (HAND) and, among those, four had HIVE. All the HIV-negative samples had non-viral acute disseminate encephalomyelitis. A total of 66 miRNAs were found differentially regulated in HIV+ compared to HIV− groups. The greatest difference in miRNA expression was observed when four cases of HIVE were compared to five non-HIVE cases, previously normalized with the HIV-negative group. After statistical analyses, eleven miRNAs were fund significantly up-regulated in HIVE. Although more clinical samples should be examined, this work represents the first report of CSF miRNAs in HIV-infection and offers the basis for future investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.