Objective. To develop a simplified and relatively inexpensive version of cartilage proteoglycan-induced arthritis (PGIA), an autoimmunity model of rheumatoid arthritis (RA), and to evaluate the extent to which this new model replicates the disease parameters of PGIA and RA.Methods. Recombinant human G1 domain of human cartilage PG containing "arthritogenic" T cell epitopes was generated in a mammalian expression system and used for immunization of BALB/c mice. The development and progression of arthritis in recombinant human PG G1-immunized mice (designated recombinant human PG G1-induced arthritis [GIA]) was monitored, and disease parameters were compared with those in the parent PGIA model.Results. GIA strongly resembled PGIA, although the clinical symptoms and immune responses in mice with GIA were more uniform than in those with PGIA. Mice with GIA showed evidence of stronger Th1 and Th17 polarization than those with PGIA, and antimouse PG autoantibodies were produced in different isotype ratios in the 2 models. Rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibodies were detected in both models; however, serum levels of IgG-RF and anti-CCP antibodies were different in GIA and PGIA, and both parameters correlated better with disease severity in GIA than in PGIA.Conclusion. GIA is a novel model of seropositive RA that exhibits all of the characteristics of PGIA. Although the clinical phenotypes are similar, GIA and PGIA are characterized by different autoantibody profiles, and the 2 models may represent 2 subtypes of seropositive RA, in which more than 1 type of autoantibody can be used to monitor disease severity and response to treatment.
Positive and negative selection steps in the thymus prevent non-functional or harmful T cells from reaching the periphery. To examine the role of glucocorticoid (GC) hormone and its intracellular receptor (GCR) in thymocyte development we measured the GCR expression in different thymocyte subpopulations of BALB/c mice with or without previous dexamethasone (DX), anti-CD3 mAb, RU-486 and RU-43044 treatment. Four-color labeling of thymocytes allowed detection of surface CD4/CD8/CD69 expression in parallel with intracellular GCR molecules by flow cytometry. Double-positive (DP) CD4+CD8+ thymocytes showed the lowest GCR expression compared to double-negative (DN) CD4-CD8- thymocytes and mature single-positive (SP) cells. DX treatment caused a concentration-dependent depletion of the DP cell population and increased appearance of mature SP cells with reduced GCR levels. GCR antagonists (RU-486 or RU-43044) did not influence the effect of DX on thymocyte composition; however, RU-43044 inhibited the high-dose GC-induced GCR down-regulation in SP and DN cells. GCR antagonists alone did not influence the maturation of thymocytes and receptor numbers. Combined low-dose anti-CD3 mAb and DX treatment caused an enhanced maturation (positive selection) of thymocytes followed by the elevation of CD69+ DP cells. The sensitivity of DP thymocytes with a GCRlow phenotype to GC action and the ineffectiveness of the GCR antagonist treatment may reflect a non-genomic GC action in the thymic selection steps.
Rheumatoid arthritis (RA) is one of the most common autoimmune disorders characterized by the chronic and progressive inflammation of various organs, most notably the synovia of joints leading to joint destruction, a shorter life expectancy, and reduced quality of life. Although we have substantial information about the pathophysiology of the disease with various groups of immune cells and soluble mediators identified to participate in the pathogenesis, several aspects of the altered immune functions and regulation in RA remain controversial. Animal models are especially useful in such scenarios. Recently research focused on IL-17 and IL-17 producing cells in various inflammatory diseases such as in RA and in different rodent models of RA. These studies provided occasionally contradictory results with IL-17 being more prominent in some of the models than in others; the findings of such experimental setups were sometimes inconclusive compared to the human data. The aim of this review is to summarize briefly the recent advancements on the role of IL-17, particularly in the different rodent models of RA.
Proteoglycan (PG) aggrecan-induced arthritis (PGIA) is a murine model of rheumatoid arthritis (RA). Although BALB/c and DBA/2 mice share the same MHC (H-2d) haplotype, the BALB/c strain is susceptible to PGIA, while DBA/2 mice are resistant. Therefore, these two inbred mouse strains provide an opportunity to study arthritis susceptibility factors excluding the effects of MHC-associated genetic components. The goal of this study was to monitor changes in the cellular composition and activation state following intra-peritoneal (i.p.) immunization to induce PGIA; additionally, we sought to identify new susceptibility factors by comparing PG-induced immune responses in BALB/c and DBA/2 mice. Upon i.p. PG injection, resident naive B1 cells are replaced by both T cells and conventional B cells in the peritoneum of BALB/c mice. These peritoneal T cells produce IFNγ and IL-17, cytokines shown to be important in RA and corresponding arthritis models. Moreover, peritoneal cells can adoptively transfer PGIA to SCID mice, demonstrating their arthritogenic properties. Our results indicate that repeatedly injected antigen leads to the recruitment and activation of immune cells in the peritoneum; these cells then trigger the effector phase of the disease. The migration and activation of Th1/Th17 cells in the peritoneal cavity in response to PG immunization, which did not occur in the arthritis-resistant DBA/2 strain, may be critical factors of arthritis susceptibility in BALB/c mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.