Gastrointestinal functions decline with ageing leading to impaired quality of life, and increased morbidity and mortality. Neurodegeneration is believed to underlie ageing-associated dysmotilities but the mechanisms have not been fully elucidated. We used progeric mice deficient in the anti-ageing peptide Klotho to investigate the contribution of key cell types of the gastric musculature to ageing-associated changes in stomach function and the under- Progeric Klotho-deficient mice had profound loss of ICC and ICC stem cells without a significant decrease in neuron counts, expression of neuronal nitric oxide synthase or smooth muscle myosin. Slow wave amplitude and nitrergic inhibitory junction potentials were reduced while solid emptying was unchanged. Klotho-deficient mice were marantic and had low insulin, insulin-like growth factor-I and membrane-bound stem cell factor. Klotho deficiency accentuated oxidative stress and ICC loss. We conclude that Klotho-deficient, progeric mice display a gastric phenotype resembling human ageing and involving profound ICC loss. Klotho protects ICC by preserving their precursors, limiting oxidative stress, and maintaining nutritional status and normal levels of trophic factors important for ICC differentiation.
The streptozotocin-induced diabetic rat model was used to investigate the relation between the deranged gut motility and the segment-specific quantitative changes in the nitrergic myenteric neurons. Additionally, we studied the effectiveness of early insulin replacement to prevent the diabetes-induced changes. Rats were divided into three groups: controls, diabetics and insulin-treated diabetics. Ten weeks after the onset of diabetes, animals were chosen from each group for intestinal transit measurements. The remainder were killed and gut segments were processed for NADPH-diaphorase histochemistry and HuC/HuD immunohistochemistry. The diabetic rats displayed faster transit than that for the controls. In the insulin-treated group, the transit time was the same as that in the controls. In the duodenum of the diabetic rats, the number of nitrergic neurons was decreased, while the total neuronal number was not altered. In the jejunum, ileum and colon, both the total and the nitrergic neuronal cell number decreased significantly. Insulin treatment did not prevent the nitrergic cell loss significantly in the duodenum and jejunum, but it did prevent it significantly in the ileum and colon. These findings comprise the first evidence that the nitrergic neurons located in different intestinal segments exhibit different susceptibilities to a diabetic state and to insulin treatment.
These data provide morphological, functional, and molecular evidence that the endothelial cells in capillaries adjacent to the MP is a target of diabetic damage in a regional manner.
The regulation of gastrointestinal motility mainly involves the smooth muscle, neural (extrinsic and intrinsic), and hormonal elements, the glial cells, and the interstitial cells of Cajal. An orchestrated function of all these components is required for the appropriate propulsive movement of the food in the gastrointestinal tract. Gastroparesis, a pathological slowing-down of gastric emptying, is a result of the damage to the tissue elements involved in the regulation of motility. Gastroparesis is one of the well-known complications of long-standing diabetes mellitus. Although it is rarely a life-threatening complication, it has a deteriorating effect on the quality of life, leads to unpredictable oscillation of the blood glucose level, and increases the time required for the absorption of food and medicines. This review describes the clinical characteristics of diabetic gastroparesis and summarizes the organic and functional motility abnormalities caused by this complication. Finally, the currently available and potential future therapeutic approaches are summarized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.