Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
This study was conducted to find the etiology of acute diarrhea in Iranian children and determine the antimicrobial resistance patterns. The pathogenic bacteria were recovered from 110/269 (40.9%) diarrheal fecal samples with the following profiles: the most predominant pathogen was diarrheagenic Escherichia coli (DEC) (43.6%), comprising enteroaggregative E. coli (23.6%), enteropathogenic E. coli (10.9%), enteroinvasive E. coli (5.5%), and enterotoxigenic E. coli (3.6%); Shigella spp. (37.3%), Salmonella spp. (12.7%) and Campylobacter jejuni (6.4%) were ranked second and fourth in terms of prevalence, respectively. The rates of extended-spectrum beta-lactamase (ESBL) production were 66.7% and 53.7% in DEC and Shigella, respectively. Resistance to ampicillin (AMP) (95.1%), trimethoprim/sulfamethoxazole (SXT) (73.2%), azithromycin (ATH) (21.9%), and ciprofloxacin (CIP) (14.6%) was observed among Shigella isolates. Multidrug resistance phenotype was observed in 24.4% (10/41) of Shigella isolates, with the most common pattern of resistance to cefotaxime, ceftriaxone, ceftazidime, AMP, SXT, and ATH. This study indicates an alarming increase in the ESBL production of DEC and Shigella spp. and identifies them as the two most prevalent diarrhea-causing enteropathogens in the region. The results show that CIP could be an alternative to third-generation cephalosporins against these two pathogens. Therefore, it is proposed that further investigation be done in the pursuit of alternative antibiotics that are effective against the resistant cases. For instance, one study could look into the comparative clinical effectiveness of third-generation cephalosporins versus CIP, the latter not being presently the drug of choice for the treatment of acute diarrhea in children in Iran.
The broad-spectrum fluoroquinolone ciprofloxacin is a bactericidal antibiotic targeting DNA topoisomerase IV and DNA gyrase encoded by the parC and gyrA genes. Resistance to ciprofloxacin in Streptococcus pneumoniae mainly occurs through the acquisition of mutations in the quinolone resistance-determining region (QRDR) of the ParC and GyrA targets. A role in low-level ciprofloxacin resistance has also been attributed to efflux systems. To look into ciprofloxacin resistance at a genome-wide scale and to discover additional mutations implicated in resistance, we performed whole-genome sequencing of an S. pneumoniae isolate selected for resistance to ciprofloxacin in vitro (128 g/ml) and of a clinical isolate displaying low-level ciprofloxacin resistance (2 g/ml). Gene disruption and DNA transformation experiments with PCR fragments harboring the mutations identified in the in vitro S. pneumoniae mutant revealed that resistance is mainly due to QRDR mutations in parC and gyrA and to the overexpression of the ABC transporters PatA and PatB. In contrast, no QRDR mutations were identified in the genome of the S. pneumoniae clinical isolate with low-level resistance to ciprofloxacin. Assays performed in the presence of the efflux pump inhibitor reserpine suggested that resistance is likely mediated by efflux. Interestingly, the genome sequence of this clinical isolate also revealed mutations in the coding region of patA and patB that we implicated in resistance. Finally, a mutation in the NAD(P)H-dependent glycerol-3-phosphate dehydrogenase identified in the S. pneumoniae clinical strain was shown to protect against ciprofloxacin-mediated reactive oxygen species. Streptococcus pneumoniae is a major Gram-positive pathogen responsible for pneumonia, bacteremia, otitis media, and meningitis leading to considerable morbidity and mortality among children and elderly individuals (1). Penicillin, a -lactam antibiotic, has long been the mainstay against pneumococcal infections (2, 3), but the worldwide spread of antibiotic-resistant clones over the past decades has impaired its usefulness for dealing with S. pneumoniae infections (4-6). The rates of resistance against -lactams and macrolides among S. pneumoniae isolates have translated into an increased usage of fluoroquinolone antibiotics in the treatment of respiratory diseases (7-10).Fluoroquinolones are part of a class of synthetic broad-spectrum antibiotics that inhibit DNA synthesis in bacteria by targeting DNA gyrase (GyrA and -B subunits) and topoisomerase IV (ParC and -E subunits), two enzymes that are vital for DNA supercoiling and chromosome segregation, respectively (11,12). Although the worldwide prevalence of fluoroquinolone-resistant S. pneumoniae remains low in relation to -lactam resistance (Յ1%) (13-15), the dissemination of successful resistant clones has nonetheless increased the prevalence in some countries (16,17). Resistance to fluoroquinolones in S. pneumoniae arises in a stepwise fashion and results from alterations in the target binding site due to...
Alterations in penicillin-binding proteins, the target enzymes for β-lactam antibiotics, are recognized as primary penicillin resistance mechanisms in Streptococcus pneumoniae. Few studies have analyzed penicillin resistance at the genome scale, however, and we report the sequencing of S. pneumoniae R6 transformants generated while reconstructing the penicillin resistance phenotypes from three penicillin-resistant clinical isolates by serial genome transformation. The genome sequences of the three last-level transformants T2-18209, T5-1983, and T3-55938 revealed that 16.2 kb, 82.7 kb, and 137.2 kb of their genomes had been replaced with 5, 20, and 37 recombinant sequence segments derived from their respective parental clinical isolates, documenting the extent of DNA transformation between strains. A role in penicillin resistance was confirmed for some of the mutations identified in the transformants. Several multiple recombination events were also found to have happened at single loci coding for penicillin-binding proteins (PBPs) that increase resistance. Sequencing of the transformants with MICs for penicillin similar to those of the parent clinical strains confirmed the importance of mosaic PBP2x, -2b, and -1a as a driving force in penicillin resistance. A role in resistance for mosaic PBP2a was also observed for two of the resistant clinical isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.