One of the important issues in the planning stage of active distribution networks (ADNs) is the optimal design of microgrids (MGs). The design, as a multi-MG system, is comprehensively investigated in this study. In this way, the allocation of energy storage systems (ESSs) and partitioning of ADN are simultaneously performed in order to minimise the cost and maximise the self-adequacy and the reliability considering the uncertainty of load and renewable energy resources. In this study, two approaches are considered. In approach I, the cost, reliability and self-adequacy objectives are taken into account whereas, in approach II, a new probabilistic index representing the ratio of load to storage capacity is also added to mentioned objectives. The proposed multi-objective problem is solved with non-dominated sorting genetic algorithm-II (NSGA-II) as a well-known algorithm based on a probabilistic approach using the Monte-Carlo simulation method (MCSM) and in each approach, several Pareto optimal solutions are evaluated. To simulate and validate the effectiveness of the proposed method, two benchmark distribution networks (the 33-bus and the 119-bus) are used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.