A composite α-µ/Lognormal fading channel is proposed with several channel performance criteria. This model considers the most effective occurrences in a fading channel, mainly non-linearity, multi-cluster nature of propagation medium, and shadowing effects. The new generation of communication systems is moving towards the use of millimetre waves (mmW). In this type of propagation, large-scale effects of fading channel on the received signal are signi cant, so in the proposed composite model, the lognormal distribution is considered to model large-scale effects of fading, which is the most accurate distribution to model shadowing. The Gaussian-Hermite quadrature sum is used to approximate the probability distribution function (PDF) of the proposed model. After calculating the statistics, the symbol error rate (SER) and ergodic capacity are computed. The Mellin transform technique is used to calculate the SER expression of different modulation schemes; then, ergodic capacity is computed for a diverse frequency spectrum. Finally, the Monte Carlo method is used to evaluate the analyses.
A composite α-µ/Lognormal fading channel is proposed with several channel performance criteria. This model considers the most effective occurrences in a fading channel, mainly non-linearity, multi-cluster nature of propagation medium, and shadowing effects. The new generation of communication systems is moving towards the use of millimetre waves (mmW). In this type of propagation, large-scale effects of fading channel on the received signal are significant, so in the proposed composite model, the lognormal distribution is considered to model large-scale effects of fading, which is the most accurate distribution to model shadowing. The Gaussian-Hermite quadrature sum is used to approximate the probability distribution function (PDF) of the proposed model. After calculating the statistics, the symbol error rate (SER) and ergodic capacity are computed. The Mellin transform technique is used to calculate the SER expression of different modulation schemes; then, ergodic capacity is computed for a diverse frequency spectrum. Finally, the Monte Carlo method is used to evaluate the analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.