Soil erosion is a serious threat to sustainable agriculture, food production, and environmental security. The advancement of accurate models for soil erosion susceptibility and hazard assessment is of utmost importance for enhancing mitigation policies and laws. This paper proposes novel machine learning (ML) models for the susceptibility mapping of the water erosion of soil. The weighted subspace random forest (WSRF), Gaussian process with a radial basis function kernel (Gaussprradial), and naive Bayes (NB) ML methods were used in the prediction of the soil erosion susceptibility. Data included 227 samples of erosion and non-erosion locations through field surveys to advance models of the spatial distribution using predictive factors. In this study, 19 effective factors of soil erosion were considered. The critical factors were selected using simulated annealing feature selection (SAFS). The critical factors included aspect, curvature, slope length, flow accumulation, rainfall erosivity factor, distance from the stream, drainage density, fault density, normalized difference vegetation index (NDVI), hydrologic soil group, soil texture, and lithology. The dataset cells of samples (70% for training and 30% for testing) were randomly prepared to assess the robustness of the different models. The functional relevance between soil erosion and effective factors was computed using the ML models. The ML models were evaluated using different metrics, including accuracy, the kappa coefficient, and the probability of detection (POD). The accuracies of the WSRF, Gaussprradial, and NB methods were 0.91, 0.88, and 0.85, respectively, for the testing data; 0.82, 0.76, and 0.71, respectively, for the kappa coefficient; and 0.94, 0.94, and 0.94, respectively, for POD. However, the ML models, especially the WSRF, had an acceptable performance regarding producing soil erosion susceptibility maps. Maps produced with the most robust models can be a useful tool for sustainable management, watershed conservation, and the reduction of soil and water loss.
Snow avalanche as a natural disaster severely affects socio-economic and geomorphic processes through damaging ecosystems, vegetation, landscape, infrastructures, transportation networks, and human life. Modeling the snow avalanche has been seen as an essential approach for understanding the mountainous landscape dynamics to assess hazard susceptibility leading to effective mitigation and resilience. Therefore, the main aim of this study is to introduce and implement an ensemble machine learning model of random subspace (RS) based on a classifier, functional tree (FT), named RSFT model for snow avalanche susceptibility mapping at Karaj Watershed, Iran. According to the best knowledge of literature, the proposed model, RSFT, has not earlier been introduced and implemented for snow avalanche modeling and mapping over the world. Four benchmark models, including logistic regression (LR), logistic model tree (LMT), alternating decision tree (ADT), and functional trees (FT) models were used to check the goodnessof-fit and prediction accuracy of the proposed model. To achieve this objective, the most important factors among many climatic, topographic, lithologic, and hydrologic factors, which affect the snow accumulation and snow avalanche occurrence, were determined by the information gain ratio (IGR) technique. The goodness-of-fit and prediction accuracy of the models were evaluated by some statistical-based indexes including, sensitivity, specificity, accuracy, kappa, and area under the ROC curve, Friedman and Wilcoxon sign rank tests. Results indicated that the ensemble proposed model (RSFT), had the highest performance (Sensitivity = 94.1%, Specificity = 92.4%, Accuracy = 93.3%, and Kappa = 0.782) rather than the other soft-computing benchmark models. The snow avalanche susceptibility maps indicated that the high and very high susceptibility avalanche areas are located in the north and northeast parts of the study area, which have a higher elevation with more precipitation and lower temperatures. INDEX TERMSSnow avalanche, susceptibility mapping, ensemble approach, feature selection. AMIRHOSEIN MOSAVI graduated from Kingston University London, U.K. He received the Ph.D. degree in applied informatics. He is currently a Data Scientist in climate change, sustainability, and hazard prediction. He is a Senior Research Fellow with Oxford Brookes University. He is also an Alexander von Humboldt Research Fellow in big data, the IoT, and machine learning. He was a recipient of the Green-Talent Award, the UNESCO Young Scientist Award, the ERCIM Alain Bensoussan Fellowship Award, the Campus France Fellowship Award, the Campus Hungary Fellowship Award, and the Endeavour-Australia Leadership.
Urban flood-risk mapping is an important tool for the mitigation of flooding in view of continuing urbanization and climate change. However, many developing countries lack sufficiently detailed data to produce reliable risk maps with existing methods. Thus, improved methods are needed that can help managers and decision makers to combine existing data with more soft semi-subjective data, such as citizen observations of flood-prone and vulnerable areas in view of existing settlements. Thus, we present an innovative approach using the semi-subjective Analytic Hierarchy Process (AHP), which integrates both subjective and objective assessments, to help organize the problem framework. This approach involves measuring the consistency of decision makers’ judgments, generating pairwise comparisons for choosing a solution, and considering criteria and sub-criteria to evaluate possible options. An urban flood-risk map was created according to the vulnerabilities and hazards of different urban areas using classification and regression-tree models, and the map can serve both as a first stage in advancing flood-risk mitigation approaches and in allocating warning and forecasting systems. The findings show that machine-learning methods are efficient in urban flood zoning. Using the city Rasht in Iran, it is shown that distance to rivers, urban drainage density, and distance to vulnerable areas are the most significant parameters that influence flood hazards. Similarly, for urban flood vulnerability, population density, land use, dwelling quality, household income, distance to cultural heritage, and distance to medical centers and hospitals are the most important factors. The integrated technique for both objective and semi-subjective data as outlined in the present study shows credible results that can be obtained without complicated modeling and costly field surveys. The proposed method is especially helpful in areas with little data to describe and display flood hazards to managers and decision makers.
Urban flood risk mapping is an important tool for the mitigation of flooding in view of human activities and climate change. Many developing countries, however, lack sufficiently detailed data to produce reliable risk maps with existing methods. Thus, improved methods are needed that can improve urban flood risk management in regions with scarce hydrological data. Given this, we estimated the flood risk map for Rasht City (Iran), applying a composition of decision-making and machine learning methods. Flood hazard maps were produced applying six state-of-the-art machine learning methods such as classification and regression trees (CART), random forest (RF), boosted regression trees (BRT), multivariate adaptive regression splines (MARS), multivariate discriminant analysis (MDA), and support vector machine (SVM). Flood conditioning parameters applied in modeling were elevation, slope angle, aspect, rainfall, distance to river (DTR), distance to streets (DTS), soil hydrological group (SHG), curve number (CN), distance to urban drainage (DTUD), urban drainage density (UDD), and land use. In total, 93 flood location points were collected from the regional water company of Gilan province combined with field surveys. We used the Analytic Hierarchy Process (AHP) decision-making tool for creating an urban flood vulnerability map, which is according to population density (PD), dwelling quality (DQ), household income (HI), distance to cultural heritage (DTCH), distance to medical centers and hospitals (DTMCH), and land use. Then, the urban flood risk map was derived according to flood vulnerability and flood hazard maps. Evaluation of models was performed using receiver-operator characteristic curve (ROC), accuracy, probability of detection (POD), false alarm ratio (FAR), and precision. The findings showed that the CART method is most accurate method (AUC = 0.947, accuracy = 0.892, POD = 0.867, FAR = 0.071, and precision = 0.929). The results also demonstrated that DTR, UDD, and DTUD played important roles in flood hazard modeling; whereas, the population density was the most significant parameter in vulnerability mapping. These findings indicated that machine learning methods can improve urban flood risk management significantly in regions with limited hydrological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.