Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host–virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.
Drosophila suzukii (Matsumura) is one of the most damaging and costly pests to invade temperate horticultural regions in recent history. Conventional control of this pest is challenging, and an environmentally benign microbial biopesticide is highly desirable. A thorough exploration of the pathogens infecting this pest is not only the first step on the road to the development of an effective biopesticide, but also provides a valuable comparative dataset for the study of viruses in the model family Drosophilidae. Here we use a metatransciptomic approach to identify viruses infecting this fly in both its native (Japanese) and invasive (British and French) ranges. We describe eighteen new RNA viruses, including members of the Picornavirales, Mononegavirales, Bunyavirales, Chuviruses, Nodaviridae, Tombusviridae, Reoviridae, and Nidovirales, and discuss their phylogenetic relationships with previously known viruses. We also detect 18 previously described viruses of other Drosophila species that appear to be associated with D. suzukii in the wild.
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga—which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient and probably shared by most metazoan (animal) phyla. Indeed, while vertebrates had been thought an exception, it has recently been suggested that mammals may also possess a functional antiviral RNAi pathway, albeit involving few small RNAs that are challenging to detect. Here we use a metagenomic approach to test for the presence of antiviral RNAi in five divergent metazoan phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify small RNAs derived from those viruses. Contrary to our expectations, we were unable to identify canonical (i.e. Drosophila-like) viral small RNAs in any of these organisms, despite the presence of abundant micro-RNAs and putative piwi-interacting piRNAs. Instead, we identified an apparently novel class of virus-derived small RNAs in the mollusc, which have a piRNAlike length distribution but lack key signatures of piRNA biogenesis, and a novel class of 21U virusderived small RNAs in the brown alga. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. This suggests either that the majority of metazoan phyla lack antiviral RNAi completely, such that antiviral RNAi has evolved independently in ecdysozoans, vertebrates, and molluscs, or that the antiviral RNAi response in most extant phyla-and the ancestral state of Metazoa-more closely resembles that of mammals than arthropods or nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.