Objective To analyse the transmission dynamics of the monkeypox outbreak in the UK, declared a Public Health Emergency of International Concern in July 2022. Design Contact tracing study, linking data on case-contact pairs and on probable exposure dates. Setting Case questionnaires from the UK Health Security Agency (UKHSA), United Kingdom. Participants 2746 people with polymerase chain reaction confirmed monkeypox virus in the UK between 6 May and 1 August 2022. Main outcome measures The incubation period and serial interval of a monkeypox infection using two bayesian time delay models—one corrected for interval censoring (ICC—interval censoring corrected) and one corrected for interval censoring, right truncation, and epidemic phase bias (ICRTC—interval censoring right truncation corrected). Growth rates of cases by reporting date, when monkeypox virus was confirmed and reported to UKHSA, were estimated using generalised additive models. Results The mean age of participants was 37.8 years and 95% reported being gay, bisexual, and other men who have sex with men (1160 out of 1213 reporting). The mean incubation period was estimated to be 7.6 days (95% credible interval 6.5 to 9.9) using the ICC model and 7.8 days (6.6 to 9.2) using the ICRTC model. The estimated mean serial interval was 8.0 days (95% credible interval 6.5 to 9.8) using the ICC model and 9.5 days (7.4 to 12.3) using the ICRTC model. Although the mean serial interval was longer than the incubation period for both models, short serial intervals were more common than short incubation periods, with the 25th centile and the median of the serial interval shorter than the incubation period. For the ICC and ICRTC models, the corresponding estimates ranged from 1.8 days (95% credible interval 1.5 to 1.8) to 1.6 days (1.4 to 1.6) shorter at the 25th centile and 1.6 days (1.5 to 1.7) to 0.8 days (0.3 to 1.2) shorter at the median. 10 out of 13 linked patients had documented pre-symptomatic transmission. Doubling times of cases declined from 9.07 days (95% confidence interval 12.63 to 7.08) on the 6 May, when the first case of monkeypox was reported in the UK, to a halving time of 29 days (95% confidence interval 38.02 to 23.44) on 1 August. Conclusions Analysis of the instantaneous growth rate of monkeypox incidence indicates that the epidemic peaked in the UK as of 9 July and then started to decline. Short serial intervals were more common than short incubation periods suggesting considerable pre-symptomatic transmission, which was validated through linked patient level records. For patients who could be linked through personally identifiable data, four days was the maximum time that transmission was detected before symptoms manifested. An isolation period of 16 to 23 days would be required to detect 95% of people with a potential infection. The 95th centile of the serial interval was between 23 and 41 days, suggesting long infectious periods.
Beginning in May 2022, Mpox virus spread rapidly in high-income countries through close human-to-human contact primarily amongst communities of gay, bisexual and men who have sex with men (GBMSM). Behavioural change arising from increased knowledge and health warnings may have reduced the rate of transmission and modified Vaccinia-based vaccination is likely to be an effective longer-term intervention. We investigate the UK epidemic presenting 26-week projections using a stochastic discrete-population transmission model which includes GBMSM status, rate of formation of new sexual partnerships, and clique partitioning of the population. The Mpox cases peaked in mid-July; our analysis is that the decline was due to decreased transmission rate per infected individual and infection-induced immunity among GBMSM, especially those with the highest rate of new partners. Vaccination did not cause Mpox incidence to turn over, however, we predict that a rebound in cases due to behaviour reversion was prevented by high-risk group-targeted vaccination.
Since May 2022, monkeypox virus (MPXV) has spread rapidly in high-income countries through close human-to-human contact primarily amongst communities of gay, bisexual and men who have sex with men (GBMSM). Behavioural change arising from increased knowledge and health warnings may have reduced the rate of transmission and Vaccinia-based vaccination is likely to be an effective longer-term intervention. We investigate the UK epidemic presenting 26-week projections using a stochastic discrete-population transmission model which includes GBMSM status, rate of formation of new sexual partnerships, and clique partitioning of the population. We find that MPXV cases peaked in mid-July, declining due to decreased transmission rate per infected individual and infection-induced immunity among GBMSM, especially those with the highest rate of new partners. We predict cases will remain low from October 2022 to March 2023 (20-65 cases a week), and a rebound in cases due to behaviour reversion prevented by high-risk group-targeted vaccination.
The monkeypox epidemic in the UK began in May 2022, and subsequently and rather quickly, rates of new cases have declined during August 2022. Identifying the causes of this decline requires accurate estimates of the time-varying epidemic growth rate r(t), which in turn depend upon the reporting delays (defined as the time from onset of symptoms to presenting to healthcare). Using a custom nowcasting method which allows for time-varying delays (EpiLine), we show that the reporting delay for Monkeypox in the UK decreased from an average of 22 days in early May 2022 to 10 days by early June and 7 days in August 2022. Accounting for these dynamic delays shows that the time-varying r(t) declined gradually in the UK over this period. Not accounting for varying time delays would have incorrectly characterised r(t) by a sharp increase followed by a rapid drop. We discuss the importance of this gradual decline, which helps identify the potential mechanisms responsible for the decline in the rate of spread of Monkeypox, which was gradual and started well before vaccines were widely used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.