Background Olfactory dysfunction (OD) has been reported in coronavirus disease 2019 (COVID-19). However, there are knowledge gaps about the severity, prevalence, etiology, and duration of OD in COVID-19 patients. Methods Olfactory function was assessed in all participants using questionnaires and the butanol threshold test (BTT). Patients with COVID-19 and abnormal olfaction were further evaluated using the smell identification test (SIT), sinus imaging, and nasoendoscopy. Selected patients received nasal biopsies. Systematic review was performed according to PRISMA guidelines. PubMed items from January 1, 2020 to April 23, 2020 were searched. Studies that reported clinical data on olfactory disturbances in COVID-19 patients were analyzed. Results We included 18 COVID-19 patients and 18 controls. Among COVID-19 patients, 12 of 18 (67%) reported olfactory symptoms and OD was confirmed in 6 patients by BTT and SIT. Olfactory dysfunction was the only symptom in 2 patients. Mean BTT score of patients was worse than controls (P = .004, difference in means = 1.8; 95% confidence interval, 0.6–2.9). Sinusitis and olfactory cleft obstruction were absent in most patients. Immunohistochemical analysis of nasal biopsy revealed the presence of infiltrative CD68+ macrophages harboring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen in the stroma. Olfactory dysfunction persisted in 2 patients despite clinical recovery. Systematic review showed that the prevalence of olfactory disturbances in COVID-19 ranged from 5% to 98%. Most studies did not assess olfaction quantitatively. Conclusions Olfactory dysfunction is common in COVID-19 and may be the only symptom. Coronavirus disease 2019-related OD can be severe and prolonged. Mucosal infiltration by CD68+ macrophages expressing SARS-CoV-2 viral antigen may contribute to COVID-19-related OD.
Non-conductive olfactory dysfunction (OD) is an important extra-pulmonary manifestation of coronavirus disease 2019 (COVID-19). Olfactory bulb (OB) volume loss and olfactory network functional connectivity (FC) defects were identified in two patients suffering from prolonged COVID-19-related OD. One patient received olfactory treatment (OT) by the combination of oral vitamin A and smell training via the novel electronic portable aromatic rehabilitation (EPAR) diffusers. After four-weeks of OT, clinical recuperation of smell was correlated with interval increase of bilateral OB volumes [right: 22.5 mm3 to 49.5 mm3 (120%), left: 37.5 mm3 to 42 mm3 (12%)] and improvement of mean olfactory FC [0.09 to 0.15 (66.6%)].
Olfactory dysfunction (OD) is a common symptom in coronavirus disease 2019 (COVID-19) patients. Moreover, many neurological manifestations have been reported in these patients, suggesting central nervous system involvement. The default mode network (DMN) is closely associated with olfactory processing. In this study, we investigated the internetwork and intranetwork connectivity of the DMN and the olfactory network (ON) in 13 healthy controls and 22 patients presenting with COVID-19-related OD using independent component analysis and region of interest functional magnetic resonance imaging (fMRI) analysis. There was a significant correlation between the butanol threshold test (BTT) and the intranetwork connectivity in ON. Meanwhile, the COVID-19 patients with OD showed significantly higher intranetwork connectivity in the DMN, as well as higher internetwork connectivity between ON and DMN. However, no significant difference was found between groups in the intranetwork connectivity within ON. We postulate that higher intranetwork functional connectivities compensate for the deficits in olfactory processing and general well-being in COVID-19 patients. Nevertheless, the compensation process in the ON may not be obvious at this stage. Our results suggest that resting-state fMRI is a potentially valuable tool to evaluate neurosensory dysfunction in COVID-19 patients.
BackgroundNon-conductive olfactory dysfunction (OD) is an important extra-pulmonary manifestation of coronavirus disease 2019 (COVID-19). Prolonged COVID-19-related OD is a serious neurosensory disability. Treatment for the restoration of smell is urgently needed.Case presentationTwo patients presenting with prolonged COVID-19-related OD underwent structural and resting-state functional magnetic resonance imaging (rs-fMRI) brain scans. Two healthy controls were recruited for radiological comparison. One patient received olfactory treatment (OT) by the combination of oral vitamin A and smell training via the novel electronic portable aromatic rehabilitation (EPAR) diffusers. After four-weeks of OT, clinical recuperation of smell was correlated with interval increase of bilateral OB volumes [right: 22.5mm3 to 49.5mm3 (120%), left: 37.5mm3 to 42mm3 (12%)] and the enhancement of mean olfactory functional connectivity [0.09 to 0.15 (66.6%)]. ConclusionsOlfactory network functional defects and OB volume loss were identified in patients presenting with prolonged COVID-19-related OD. Preliminary evidence demonstrated that the combination of oral vitamin A and smell training may induce neurogenesis at the olfactory apparatus and achieve olfactory neurosensory rehabilitation. This observation should be validated in large scale randomized–controlled trials.
Background: Olfactory dysfunction (OD) is a common neurosensory manifestation in long COVID. An effective and safe treatment against COVID-19-related OD is needed. Methods: This pilot trial recruited long COVID patients with persistent OD. Participants were randomly assigned to receive short-course (14 days) oral vitamin A (VitA; 25,000 IU per day) and aerosolised diffuser olfactory training (OT) thrice daily (combination), OT alone (standard care), or observation (control) for 4 weeks. The primary outcome was differences in olfactory function by butanol threshold tests (BTT) between baseline and end-of-treatment. Secondary outcomes included smell identification tests (SIT), structural MRI brain, and serial seed-based functional connectivity (FC) analyses in the olfactory cortical network by resting-state functional MRI (rs–fMRI). Results: A total of 24 participants were randomly assigned to receive either combination treatment (n = 10), standard care (n = 9), or control (n = 5). Median OD duration was 157 days (IQR 127–175). Mean baseline BTT score was 2.3 (SD 1.1). At end-of-treatment, mean BTT scores were significantly higher for the combination group than control (p < 0.001, MD = 4.4, 95% CI 1.7 to 7.2) and standard care (p = 0.009) groups. Interval SIT scores increased significantly (p = 0.009) in the combination group. rs–fMRI showed significantly higher FC in the combination group when compared to other groups. At end-of-treatment, positive correlations were found in the increased FC at left inferior frontal gyrus and clinically significant improvements in measured BTT (r = 0.858, p < 0.001) and SIT (r = 0.548, p = 0.042) scores for the combination group. Conclusions: Short-course oral VitA and aerosolised diffuser OT was effective as a combination treatment for persistent OD in long COVID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.