Rheumatoid arthritis (RA) is a chronic inflammatory disorder that primarily involves the joints. Accurate and frequent assessment of RA disease activity is critical to optimal treatment planning. A novel algorithm has been developed to determine a multi-biomarker disease activity (MBDA) score based upon measurement of the concentrations of 12 serum biomarkers in multiplex format. Biomarker assays from several different platforms were used in feasibility studies to identify biomarkers of potential significance. These assays were adapted to a multiplex platform for training and validation of the algorithm. In this study, the analytical performance of the underlying biomarker assays and the MBDA score was evaluated. Quantification of 12 biomarkers was performed with multiplexed sandwich immunoassays in three panels. Biomarker-specific capture antibodies were bound to specific locations in each well; detection antibodies were labeled with electrochemiluminescent tags. Data were acquired with a Sector Imager 6000, and analyte concentrations were determined. Parallelism, dynamic range, cross-reactivity, and precision were established for each biomarker as well as for the MBDA score. Interference by serum proteins, heterophilic antibodies, and common RA therapies was also assessed. The individual biomarker assays had 3-4 orders of magnitude dynamic ranges, with good reproducibility across time, operators, and reagent lots; the MBDA score had a median coefficient of variation of <2% across the score range. Cross-reactivity as well as interference by serum rheumatoid factor (RF), human anti-mouse antibodies (HAMA), or common RA therapies, including disease-modifying antirheumatic drugs and biologics, was minimal. The same MBDA score was observed in different subjects despite having different biomarker profiles, supporting prior literature reports that multiple pathways contribute to RA.
IntroductionReceptor activator of nuclear factor kappa B ligand (RANKL) is a key regulator of bone metabolism. Anti-citrullinated protein antibodies (ACPA) have been suggested to cause bone destruction by osteoclast activation. We investigated the relationship between RANKL and ACPA in patients with early untreated rheumatoid arthritis (RA).MethodsPatients with newly diagnosed untreated RA (n = 183) were analyzed at baseline and 3 months after initiating methotrexate (MTX) treatment. Serum RANKL (total RANKL), ACPA (anti-CCP2) and ACPA specificities (anti-citrullinated (cit)-vimentin, anti-cit-enolase and anti-cit-fibrinogen) were determined by enzyme-linked immunosorbent assay (ELISA). Synovial RANKL expression was evaluated by immunohistochemistry in a small group of patients (n = 15). The relationship between anti-cit-vim antibodies and bone destruction was further validated in 1116 RA patients included in the EIRA cohort. Pearson’s chi-square test, Wilcoxon rank sum test, Wilcoxon signed rank test and linear regression models were used.ResultsSerum RANKL concentration was significantly higher (p <0.05) in ACPA-positive (median: 689 pmol/L, IQR 342–1253) compared with ACPA-negative (median: 159 pmol/L, IQR 96–243) patients and this difference was also seen for synovial RANKL expression. Serum RANKL associated with ACPA (p <0.05) and bone erosions in rheumatoid factor (RF)-negative patients (n = 59). Among ACPA specificites, anti-cit-vimentin (amino acids 60–75) was associated with higher RANKL concentration and higher prevalence of bone erosion (p <0.05). Significant reductions in both serum RANKL and ACPA levels were observed after 3 months of MTX treatment (p <0.05).ConclusionsRANKL was elevated in ACPA-positive and in anti-cit-vimentin-positive patients with early untreated RA and associated with bone erosions. These findings give further support for an early direct pathogenic link between ACPA and bone destruction in RA.
1 Cell-surface expression of CD40 in B-cell malignancies and multiple solid tumors has raised interest in its potential use as a target for antibody-based cancer therapy. SGN-40, a humanized monoclonal anti-CD40 antibody, mediates antibody-dependent cytotoxicity and inhibits B-cell tumor growth in vitro, properties of interest for the treatment of cancers, and is currently in Phase I clinical trials for B-cell malignancies. In this study, we determined in vivo activity and pharmacokinetics properties of SGN-40. 2 Effect of SGN-40 in xenograft model of CD40-expressing B-cell lymphoma in severe-combined immune deficiency mice and its in vivo pharmacokinetics properties in normal mice, rats and cynomolgus monkeys were studied. 3 Treatment with SGN-40 significantly increased the survival of mice xenografted with human B-cell lymphoma cell line. SGN-40 exhibited nearly 100% bioavailability in mice and it cleared faster when given at a low dose. In monkeys, clearance of SGN-40 was also much faster at low dose, suggesting nonlinear pharmacokinetics in these species. In rats, however, SGN-40 clearance at all tested doses was similar, suggesting that pharmacokinetics were linear in this dose range in rats. Administration of SGN-40 to monkeys also produced marked, dose-dependent, and persistent depletion of peripheral CD20 þ B lymphocytes. 4 Data presented in this report suggest that SGN-40 is active in in vivo, and based upon interspecies scaling, SGN-40 clearance in humans is predicted to be similar to observed SGN-40 clearance in monkeys. These data suggest that SGN-40 has appropriate pharmacokinetic properties that support its clinical use.
PRO70769 is a humanized IgG1 monoclonal antibody against the CD20 molecule that is present on normal and malignant B cells. PRO70769 is being evaluated for treatment of B-cell-mediated diseases and is in a phase 1 trial for rheumatoid arthritis. As part of the preclinical toxicology evaluation, B-cell depletion profiles and safety of PRO70769 were assessed in cynomolgus monkeys. Animals were administered drug (IV) on days 1 and 15 with 10, 50, or 100 mg/kg PRO70769 and killed 2 weeks after the second dose and after a 3-month recovery period. In a parallel study, animals were not necropsied but instead were retreated with a second cycle of PRO70769 administered under an identical regimen. PRO70769 suppressed B cells in the blood to undetectable levels and significantly reduced B cells in lymphoid tissues. Splenic B cells were depleted to a greater extent compared with lymph node B cells. A second cycle of treatment resulted in a greater extent of depletion in lymphoid tissues compared with the depletion observed after one cycle of treatment; however, residual B cells in lymphoid tissues were still detectable, even at the highest dose. The rate of B-cell recovery in peripheral blood appeared similar between one and two cycles of treatment. Upon depletion there was a change in the profile of lymph node B-cell subsets. After recovery, B-cell subsets were reconstituted to normal levels. Depletion of CD20-expressing cells and lymphoid follicular atrophy were the only treatment-related effects.
Variability in pre-analytical blood sampling and handling can significantly impact results obtained in quantitative immunoassays. Understanding the impact of these variables is critical for accurate quantification and validation of biomarker measurements. Particularly, in the design and execution of large clinical trials, even small differences in sample processing and handling can have dramatic effects in analytical reliability, results interpretation, trial management and outcome. The effects of two common blood sampling methods (serum vs. plasma) and two widely-used serum handling methods (on the clot with ambient temperature shipping, “traditional”, vs. centrifuged with cold chain shipping, “protocol”) on protein and autoantibody concentrations were examined. Matched serum and plasma samples were collected from 32 rheumatoid arthritis (RA) patients representing a wide range of disease activity status. Additionally, a set of matched serum samples with two sample handling methods was collected. One tube was processed per manufacturer’s instructions and shipped overnight on cold packs (protocol). The matched tube, without prior centrifugation, was simultaneously shipped overnight at ambient temperatures (traditional). Upon delivery, the traditional tube was centrifuged. All samples were subsequently aliquoted and frozen prior to analysis of protein and autoantibody biomarkers. Median correlation between paired serum and plasma across all autoantibody assays was 0.99 (0.98–1.00) with a median % difference of −3.3 (−7.5 to 6.0). In contrast, observed protein biomarker concentrations were significantly affected by sample types, with median correlation of 0.99 (0.33–1.00) and a median % difference of −10 (−55 to 23). When the two serum collection/handling methods were compared, the median correlation between paired samples for autoantibodies was 0.99 (0.91–1.00) with a median difference of 4%. In contrast, significant increases were observed in protein biomarker concentrations among certain biomarkers in samples processed with the ‘traditional’ method. Autoantibody quantification appears robust to both sample type (plasma vs. serum) and pre-analytical sample collection/handling methods (protocol vs. traditional). In contrast, for non-antibody protein biomarker concentrations, sample type had a significant impact; plasma samples generally exhibit decreased protein biomarker concentrations relative to serum. Similarly, sample handling significantly impacted the variability of protein biomarker concentrations. When biomarker concentrations are combined algorithmically into a single test score such as a multi-biomarker disease activity test for rheumatoid arthritis (MBDA), changes in protein biomarker concentrations may result in a bias of the score. These results illustrate the importance of characterizing pre-analytical methodology, sample type, sample processing and handling procedures for clinical testing in order to ensure test accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.