In this study, it was aimed to investigate the adsorption properties of the biochars obtained by pyrolysis of hazelnut and walnut shells for removal of copper ions from aqueous solutions. The characterization of raw biomasses and also biochars were performed using TGA-DTG, FT-IR, BET, SEM, partial and elemental analysis techniques. The optimum conditions were determined by investigating the effect of adsorption parameters (initial concentration, temperature, adsorbent amount, pH, contact time and mixing speed) for efficient removal of copper ions from aqueous solution by batch adsorption experiments carried out under different conditions. The highest adsorption efficiency were recorded 82 and 86% respectively for hazelnut and walnut shell biochars at pH 4, Co = 15 ppm, adsorbent dosage = 3 g/L and mixing speed = 600 rpm. Experimental results showed that the adsorption efficiency for copper ions increased with the increase of temperature (T = 45 °C) in studies only using biochar obtained from hazelnut shell. While the time of equilibrium in the aqueous solution containing copper ions was determined to be 75 min for walnut shell char, this duration was 30 min for hazelnut shell char. The experimental results were investigated in terms of Langmuir, Freundlich and Temkin isotherm models. Together with the calculated thermodynamic parameters, the adsorption mechanism was tried to be explained. In order to determine the kinetic model of the adsorption process, the experimental data were applied to pseudo first-order, pseudo second-order and intra-particle diffusion model, and the model constants were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.