This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety.
Demirci, Cihan (Dogus Author) -- Conference full title: 27th International Conference on Information Networking, ICOIN 2013; Bangkok; Thailand; 27 January 2013 through 30 January 2013Cognitive radio (CR) is an emerging technology which aims to solve the current wireless spectra problems in terms of efficiency and utilization. CRs should respond adequately to environmental changes in order to operate in a highly efficient manner. Reinforcement learning (RL) is an effective method that entails exploration, followed by exploitation and is used to train CRs to function in unknown environments. However, it also suffers from cases that cannot be easily avoided and recovered from, such as: conservative behavior causing converging to a non-ideal state and aggressive exploration that results in disrupting the network. In this paper, we propose a self-evaluating, RL-based spectrum management approach for cognitive ad-hoc networks. We investigate a means to detect environmental changes by having a CR inspect its information consistency and respond accordingly to changes in the environment. We also aim to grant CRs more flexibility in exploration behavior since using this approach will make it easier to remedy any shortcomings caused by aggressive exploration. The benefit of applying our algorithm is demonstrated and comparisons of performances using evaluations of different scopes are also provided to illustrate their impact on the spectrum management. Simulation results show the proposed approach is effective and able to improve the performance by increasing CRs' responsiveness to environmental changes and allowing fast recovery
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.